Skip to main content

Advertisement

Log in

Anabolic effect of β-cryptoxanthin in osteoblastic MC3T3-E1 cells is enhanced with 17β-estradiol, genistein, or zinc sulfate in vitro: the unique effect with zinc on Runx2 and α1(I) collagen mRNA expressions

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Whether the anabolic effect of β-cryptoxanthin (CRP), a kind of carotenoid, on osteoblastic MC3T3-E1 cells are modulated in the presence of various hormones or nutrient factors were investigated. Cells were cultured for 72 h in a minimum essential medium containing 10% fetal bovine serum (FBS), and the cells with subconfluency were changed to a medium containing either vehicle or CRP (10−8–10−6 M) in the presence or absence of various factors without FBS. Cells were cultured for 72 h. Protein content or alkaline phosphatase activity in osteoblastic cells were significantly increased after culture with CRP (10−7 or 10−6 M), 1,25-dihydroxyvitamin D3 (VD3; 10−9 or 10−8 M), 17β-estradiol (E2; 10−9 M), genistein (10−7 or 10−6 M), or menaquinone-7 (MK-7; 10−7 or 10−6 M). The effect of CRP (10−6 M) in increasing protein content in the cells was significantly enhanced in the presence of E2 (10−9 M) or genistein (10−6 M). Gene expression in osteoblastic cells was determined using reverse transcription-polymerase chain reaction (RT-PCR). Culture with CRP (10−7 or 10−6 M) caused a significant increase in the expression of Runx2 and alkaline phosphatase mRNAs in the cells. Runx2 mRNA expression was significantly increased after culture with E2 (10−9 M) or MK-7 (10−7 or 10−6 M), but not VD3 (10−9 or 10−8 M) or genistein (10−7 or 10−6 M). Alkaline phosphatase mRNA expression was significantly increased after culture with VD3 (10−9 or 10−8 M), genistein (10−7 or 10−6 M), or MK-7 (10−7 or 10−6 M), but not E2 (10−10 or 10−9 M). The effect of CRP (10−7 or 10−6 M) in increasing Runx2 or alkaline phosphatase mRNA expressions in the cells was not enhanced in the presence of VD3, E2, genistein, or MK-7. Culture with zinc sulfate (zinc; 10−5 M) caused a significant increase in protein content or alkaline phosphatase activity in osteoblastic cells. The effect of CRP (10−7 M) in increasing protein content or alkaline phosphatase activity in the cells was not significantly enhanced in the presence of zinc (10−5 M). Culture with zinc (10−5 M) caused a significant increase in α1(I) collagen mRNA expression, while it did not have a significant effect on Runx2 or osteocalcin mRNA expressions in the cells. The effect of CRP (10−7 M) in increasing Runx2 or α1(I) collagen mRNA expressions was significantly enhanced in the presence of zinc (10−6 or 10−5 M). Such an effect was not seen in the presence of cycloheximide (10−7 M), an inhibitor of protein synthesis, or 5,6-dichloro-1-β-d-ribofuranosyl-benzimidazole (DRB; 10−6 M), an inhibitor of transcriptional activity. This study demonstrates that the stimulatory effect of CRP on protein content in osteoblastic cells was additively enhanced with E2 or genistein, and that the stimulatory effect of CRP on Runx2 or α1(I) collagen mRNA expressions was enhanced in the presence of zinc. Thus, the anabolic effect of CRP in osteoblastic MC3T3-E1 cells was modulated with a specific factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cooper C, Melton J III (1995) Epidemiology of osteoporosis. Trends Endocrinol Metab 3:224–229

    Google Scholar 

  2. Bonjour J-P, Schurch M-A, Rozzori R (1996) Nutritional aspects of hip fracture. Bone 18:1395–1445

    Article  Google Scholar 

  3. Yamaguchi M (2002) Isoflavone and bone metabolism: its cellular mechanism and preventive role in bone loss. J Health Sci 48:209–222

    Article  CAS  Google Scholar 

  4. Yamaguchi M, Uchiyama S (2003) Effect of carotenoid on calcium content and alkaline phosphatase activity in rat femoral tissues in vitro: the unique anabolic effect of β-cryptoxanthin. Biol Pharm Bull 26:1188–1191

    Article  PubMed  CAS  Google Scholar 

  5. Uchiyama S, Sumida T, Yamaguchi M (2004) Oral administration of β-cryptoxanthin induces anabolic effect on bone components in the femoral tissues of rats in vivo. Biol Pharm Bull 27:232–235

    Article  PubMed  CAS  Google Scholar 

  6. Yamaguchi M, Uchiyama S (2004) β-Cryptoxanthin stimulates bone formation and inhibits bone resorption in tissue culture in vitro. Mol Cell Biochem 258:137–144

    Article  PubMed  CAS  Google Scholar 

  7. Uchiyama S, Yamaguchi M (2005) β-Cryptoxanthin stimulates cell proliferation and transcriptional activity in osteoblastic MC3T3-E1 cells. Int J Mol Med 15:675–681

    PubMed  CAS  Google Scholar 

  8. Uchiyama S, Yamaguchi M (2005) β-Cryptoxanthin stimulates cell differentiation and mineralization in osteoblastic MC3T3-E1 cells. J Cell Biochem 95:1224–1234

    Article  PubMed  CAS  Google Scholar 

  9. Uchiyama S, Yamaguchi M (2004) Inhibitory effect of β-cryptoxanthin on osteoclast-like cell formation in mouse marrow cultures. Biochem Pharmacol 67:1297–1305

    Article  PubMed  CAS  Google Scholar 

  10. Uchiyama S, Yamaguchi M (2006) β-Cryptoxanthin stimulates apoptotic cell death and suppresses cell function in osteoclastic cells: change in their related gene expression. J Cell Biochem 98:1185–1195

    Article  PubMed  CAS  Google Scholar 

  11. Uchiyama S, Sumida T, Yamaguchi M (2004) Anabolic effect of β-cryptoxanthin on bone components in the femoral tissues of aged rats in vivo and in vitro. J Health Sci 50:491–496

    Article  CAS  Google Scholar 

  12. Uchiyama S, Yamaguchi M (2005) Oral administration of β-cryptoxanthin prevents bone loss in streptozotocin-diabetic rats in vivo. Biol Pharm Bull 28:1766–1769

    Article  PubMed  CAS  Google Scholar 

  13. Uchiyama S, Yamaguchi M (2006) Oral administration of β-cryptoxanthin prevents bone loss in ovariectomized rats. In J Mol Med 17:15–20

    CAS  Google Scholar 

  14. Yamaguchi M, Igarashi A, Uchiyama S, Sugawara K, Sumida T, Morita S, Ogawa H, Nishitani M, Kajimoto Y (2006) Effect of β-cryptoxanthin on circulating bone metabolic markers: intake of juice (Citrus Unshiu) supplemented with β-cryptoxanthin has an effect in menopausal women. J Health Sci 52:758–768

    Article  CAS  Google Scholar 

  15. Yamaguchi M, Oishi H, Suketa Y (1987) Stimulatory effect of zinc on bone formation in tissue culture. Biochem Pharmacol 36:4007–4012

    Article  PubMed  CAS  Google Scholar 

  16. Hashizume M, Yamaguchi M (1991) Stimulatory effect of β-alanyl-L-histidinato zinc on cell proliferation is dependent on protein synthesis in osteoblastic MC3T3-E1 cells. Mol Cell Biochem 122:59–64

    Article  Google Scholar 

  17. Kishi S, Yamaguchi M (1994) Inhibitory effect of zinc compounds on osteoclast-like cell formation in mouse marrow cultures. Biochem Pharmacol 48:1225–1230

    Article  PubMed  CAS  Google Scholar 

  18. Yamaguchi M, Uchiyama S (2004) Receptor activator of NF-κB ligand-stimulated osteoclastogenesis in mouse marrow culture is suppressed by zinc in vitro. Int J Mol Med 14:81–85

    PubMed  CAS  Google Scholar 

  19. Yamaguchi M, Kishi S, Hashizume M (1994) Effect of zinc-chelating dipeptides on osteoblastic MC3T3-E1 cells: activator of aminoacyl-tRNA synthase. Peptides 15:1367–1371

    Article  PubMed  CAS  Google Scholar 

  20. Kishi S, Segawa Y, Yamaguchi M (1994) Histomorphological confirmation of the preventive effect of β-alanyl-l-histidinato zinc on bone loss in ovariectomized rats. Biol Pharm Bull 17:862–865

    PubMed  CAS  Google Scholar 

  21. Uchiyama S, Ishiyama K, Yamaguchi M (2005) Synergistic effect of β-cryptoxanthin and zinc sulfate on the bone component in rat femoral tissues in vitro: the unique anabolic effect with zinc. Biol Pharm Bull 28:2142–2145

    Article  PubMed  CAS  Google Scholar 

  22. Yamaguchi M, Uchiyama S, Ishiyama K, Hashimoto K (2006) Oral administration in combination with zinc enhances β-cryptoxanthin-induced anabolic effects on bone components in the femoral tissues of rats in vivo. Biol Pharm Bull 29:371–374

    Article  PubMed  CAS  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  24. Walter K, Schutt C (1965) Acid and alkaline phosphatase in serum. In: Bergmeyer HV (ed) Methods of enzymatic analysis, vols 1–2, Academic Press, New York, pp 856–860

  25. Chamczynshi P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  Google Scholar 

  26. Sohn KY, Maity SN, de Crombrugghe B (1994) Studies on the structure of CBF-A isoform generated from an alternatively spliced RNA. Gene 139:147–153

    Article  PubMed  CAS  Google Scholar 

  27. Luppen CA, Smith E, Spevak L, Boshey AL, Frenhel B (2003) Bone morphogenetic protein-2 restores mineralization in glucocorticoid-inhibited MC3T3-E1 osteoblast cultures. J Bone Miner Res 18:1186–1197

    Article  PubMed  CAS  Google Scholar 

  28. Wilcox FH, Tatlor BA (1981) Genetics of the Akp-2 locus for alkaline phosphatase of liver, kidney, bone, and placenta in the mouse. Linkage with the Ahd-1 locus on chromosome 4. J Hered 72:387–390

    PubMed  CAS  Google Scholar 

  29. Desbois C, Hogue DA, Karsenty G (1994) The mouse osteocalcin gene culture contains three genes with two separate spatial and temporal patterns of expression. J Biol Chem 269:1183–1190

    PubMed  CAS  Google Scholar 

  30. Yamaguchi M, Sugimoto E, Hachiya S (2001) Stimulatory effect of menaquinone-7 (vitamin K2) on osteoblastoc bone formation in vitro. Mol Cell Biochem 223:131–137

    Article  PubMed  CAS  Google Scholar 

  31. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Tageted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  PubMed  CAS  Google Scholar 

  32. Majeska RJ, Wnthier RE (1975) Studies on matrix resicles isolated from chick epiphyseal cartilage. Association of pyrophosphatase and ATPase activities with alkaline phosphatase. Biochem Biophys Acta 391:51–60

    PubMed  CAS  Google Scholar 

  33. Yamaguchi M, Oishi H, Suketa Y (1998) Zinc stimulation of bone protein synthesis in tissue culture. Activation of bone aminoacyl-tRNA synthase. Biochem Pharmacol 37:4075–4080

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchiyama, S., Yamaguchi, M. Anabolic effect of β-cryptoxanthin in osteoblastic MC3T3-E1 cells is enhanced with 17β-estradiol, genistein, or zinc sulfate in vitro: the unique effect with zinc on Runx2 and α1(I) collagen mRNA expressions. Mol Cell Biochem 307, 209–219 (2008). https://doi.org/10.1007/s11010-007-9600-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9600-9

Keywords

Navigation