Skip to main content

Advertisement

Log in

β-Actin is a downstream effector of the PI3K/AKT signaling pathway in myeloma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Interleukin 6 is the in vivo growth factor of myeloma cells. In response to IL-6 stimulation, the PI3K/AKT signaling pathway is activated in these cells. With comparative proteomic approaches, this study reveals many putative downstream effectors of the PI3K/AKT pathway. Mass spectrometry analysis of excised protein spots from 2-dimensional gel allowed the identification of proteins such as β-Actin, cyclophilin A, E3 SUMO-protein ligase PIAS-NY protein, HSP 27, PML, and transforming growth factor β-2. Among these putative effectors, β-Actin was chosen for further characterization. Phosphorylation of β-Actin by AKT upon IL-6 stimulation was confirmed by western blotting using a phospho-AKT substrate antibody. Interestingly, IL-6 significantly increased cell migration (P < 0.05) and the content of filamentous actin (P < 0.05). Therefore, IL-6 stimulation could have effects on the migration of myeloma cells, and the phosphorylation of β-Actin is probably involved in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Richardson PG, Mitsiades C, Schlossman R, Munshi N, Anderson K (2007) New drugs for myeloma. Oncologist 12:664–689

    Article  CAS  PubMed  Google Scholar 

  2. Kyle RA, Rajkumar SV (2004) Multiple myeloma. N Engl J Med 351:1860–1873

    Article  CAS  PubMed  Google Scholar 

  3. Bataille R, Jourdan M, Zhang XG, Klein B (1989) Serum levels of interleukin 6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscrasias. J Clin Invest 84:2008–2011

    Article  CAS  PubMed  Google Scholar 

  4. Reibnegger G, Krainer M, Herold M, Ludwig H, Wachter H, Huber H (1991) Predictive value of interleukin-6 and neopterin in patients with multiple myeloma. Cancer Res 51:6250–6253

    CAS  PubMed  Google Scholar 

  5. Klein B, Wijdenes J, Zhang XG, Jourdan M, Boiron JM, Brochier J, Liautard J, Merlin M, Clement C, Morel-Fournier B et al (1991) Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood 78:1198–1204

    CAS  PubMed  Google Scholar 

  6. Bataille R, Barlogie B, Lu ZY, Rossi JF, Lavabre-Bertrand T, Beck T, Wijdenes J, Brochier J, Klein B (1995) Biologic effects of anti-interleukin-6 murine monoclonal antibody in advanced multiple myeloma. Blood 86:685–691

    CAS  PubMed  Google Scholar 

  7. Suematsu S, Matsusaka T, Matsuda T, Ohno S, Miyazaki J, Yamamura K, Hirano T, Kishimoto T (1992) Generation of plasmacytomas with the chromosomal translocation t(12;15) in interleukin 6 transgenic mice. Proc Natl Acad Sci USA 89:232–235

    Article  CAS  PubMed  Google Scholar 

  8. Hilbert DM, Kopf M, Mock BA, Kohler G, Rudikoff S (1995) Interleukin 6 is essential for in vivo development of B lineage neoplasms. J Exp Med 182:243–248

    Article  CAS  PubMed  Google Scholar 

  9. Tu Y, Gardner A, Lichtenstein A (2000) The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses. Cancer Res 60:6763–6770

    CAS  PubMed  Google Scholar 

  10. Hideshima T, Nakamura N, Chauhan D, Anderson KC (2001) Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20:5991–6000

    Article  CAS  PubMed  Google Scholar 

  11. Hsu J, Shi Y, Krajewski S, Renner S, Fisher M, Reed JC, Franke TF, Lichtenstein A (2001) The AKT kinase is activated in multiple myeloma tumor cells. Blood 98:2853–2855

    Article  CAS  PubMed  Google Scholar 

  12. Hsu JH, Shi Y, Hu L, Fisher M, Franke TF, Lichtenstein A (2002) Role of the AKT kinase in expansion of multiple myeloma clones: effects on cytokine-dependent proliferative and survival responses. Oncogene 21:1391–1400

    Article  CAS  PubMed  Google Scholar 

  13. Lawlor MA, Alessi DR (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114:2903–2910

    CAS  PubMed  Google Scholar 

  14. Shi Y, Hsu JH, Hu L, Gera J, Lichtenstein A (2002) Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to interleukin-6. J Biol Chem 277:15712–15720

    Article  CAS  PubMed  Google Scholar 

  15. Howard TH, Meyer WH (1984) Chemotactic peptide modulation of actin assembly and locomotion in neutrophils. J Cell Biol 98:1265–1271

    Article  CAS  PubMed  Google Scholar 

  16. Zufferey R, Nagy D, Mendel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    Article  CAS  PubMed  Google Scholar 

  17. Vandermoere F, El Yazidi-Belkoura I, Demont Y, Slomianny C, Antol J, Lemoine J, Hondermarck H (2007) Proteomics exploration reveals that actin is a signaling target of the kinase Akt. Mol Cell Proteomics 6:114–124

    CAS  PubMed  Google Scholar 

  18. Alessi DR, Caudwell FB, Andjelkovic M, Hemmings BA, Cohen P (1996) Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett 399:333–338

    Article  CAS  PubMed  Google Scholar 

  19. Obata T, Yaffe MB, Leparc GG, Piro ET, Maegawa H, Kashiwagi A, Kikkawa R, Cantley LC (2000) Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem 275:36108–36115

    Article  CAS  PubMed  Google Scholar 

  20. Nelson EA, Walker SR, Kepich A, Gashin LB, Hideshima T, Ikeda H, Chauhan D, Anderson KC, Frank DA (2008) Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood 112:5095–5102

    Article  CAS  PubMed  Google Scholar 

  21. Singh N, Webb R, Adams R, Evans SA, Al-Mosawi A, Evans M, Roberts AW, Thomas AW (2005) The PPAR-gamma activator, Rosiglitazone, inhibits actin polymerisation in monocytes: involvement of Akt and intracellular calcium. Biochem Biophys Res Commun 333:455–462

    Article  CAS  PubMed  Google Scholar 

  22. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    Article  CAS  PubMed  Google Scholar 

  23. Postma M, Bosgraaf L, Loovers HM, Van Haastert PJ (2004) Chemotaxis: signalling modules join hands at front and tail. EMBO Rep 5:35–40

    Article  CAS  PubMed  Google Scholar 

  24. Fuhler GM, Drayer AL, Olthof SG, Schuringa JJ, Coffer PJ, Vellenga E (2008) Reduced activation of protein kinase B, Rac, and F-actin polymerization contributes to an impairment of stromal cell derived factor-1 induced migration of CD34+ cells from patients with myelodysplasia. Blood 111:359–368

    Article  CAS  PubMed  Google Scholar 

  25. Percherancier Y, Germain-Desprez D, Galisson F, Mascle XH, Dianoux L, Estephan P, Chelbi-Alix MK, Aubry M (2009) Role of SUMO in RNF4-mediated promyelocytic leukemia protein (PML) degradation: sumoylation of PML and phospho-switch control of its SUMO binding domain dissected in living cells. J Biol Chem 284:16595–16608

    Article  CAS  PubMed  Google Scholar 

  26. Crowder C, Dahle O, Davis RE, Gabrielsen OS, Rudikoff S (2005) PML mediates IFN-alpha-induced apoptosis in myeloma by regulating TRAIL induction. Blood 105:1280–1287

    Article  CAS  PubMed  Google Scholar 

  27. Zheng J, Koblinski JE, Dutson LV, Feeney YB, Clevenger CV (2008) Prolyl isomerase cyclophilin A regulation of Janus-activated kinase 2 and the progression of human breast cancer. Cancer Res 68:7769–7778

    Article  CAS  PubMed  Google Scholar 

  28. Bauer K, Kretzschmar AK, Cvijic H, Blumert C, Loffler D, Brocke-Heidrich K, Schiene-Fischer C, Fischer G, Sinz A, Clevenger CV, Horn F (2009) Cyclophilins contribute to Stat3 signaling and survival of multiple myeloma cells. Oncogene 28:2784–2795

    Article  CAS  PubMed  Google Scholar 

  29. Vandermoere F, Yazidi-Belkoura I, Slomianny C, Demont Y, Bidaux G, Adriaenssens E, Lemoine J, Hondermarck H (2006) The valosin-containing protein (VCP) is a target of Akt signaling required for cell survival. J Biol Chem 281:14307–14313

    Article  CAS  PubMed  Google Scholar 

  30. Hu L, Shi Y, Hsu J-H, Gera J, Van Ness B, Lichtenstein A (2003) Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 101:3126–3135

    Article  CAS  PubMed  Google Scholar 

  31. Kane S, Sano H, Liu SC, Asara JM, Lane WS, Garner CC, Lienhard GE (2002) A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J Biol Chem 277:22115–22118

    Article  CAS  PubMed  Google Scholar 

  32. Anjum R, Roux PP, Ballif BA, Gygi SP, Blenis J (2005) The tumor suppressor DAP kinase is a target of RSK-mediated survival signaling. Curr Biol 15:1762–1767

    Article  CAS  PubMed  Google Scholar 

  33. de Gorter DJ, Reijmers RM, Beuling EA, Naber HP, Kuil A, Kersten MJ, Pals ST, Spaargaren M (2008) The small GTPase Ral mediates SDF-1-induced migration of B cells and multiple myeloma cells. Blood 111:3364–3372

    Article  PubMed  Google Scholar 

  34. Hov H, Holt RU, Ro TB, Fagerli UM, Hjorth-Hansen H, Baykov V, Christensen JG, Waage A, Sundan A, Borset M (2004) A selective c-met inhibitor blocks an autocrine hepatocyte growth factor growth loop in ANBL-6 cells and prevents migration and adhesion of myeloma cells. Clin Cancer Res 10:6686–6694

    Article  CAS  PubMed  Google Scholar 

  35. Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T, Lin BK, Gupta D, Shima Y, Chauhan D, Mitsiades C, Raje N, Richardson P, Anderson KC (2001) Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 98:428–435

    Article  CAS  PubMed  Google Scholar 

  36. Hov H, Tian E, Holien T, Holt RU, Vatsveen TK, Fagerli UM, Waage A, Borset M, Sundan A (2009) c-Met signaling promotes IL-6-induced myeloma cell proliferation. Eur J Haematol 82:277–287

    Article  CAS  PubMed  Google Scholar 

  37. Menu E, Braet F, Timmers M, Van Riet I, Van Camp B, Vanderkerken K (2002) The F-actin content of multiple myeloma cells as a measure of their migration. Ann N Y Acad Sci 973:124–136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. A. Lichtenstein of UCLA for his critical review. This work was supported by a grant to JH Hsu (NSC 94-2320-B-259-002) from National Science Council, Taiwan and a grant from National Research Program for Genomic Medicine, Taiwan (National RNAi Core, NSC-99-3112-B-001-024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Hsin Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, YP., Kuo, CW., Hsu, YT. et al. β-Actin is a downstream effector of the PI3K/AKT signaling pathway in myeloma cells. Mol Cell Biochem 348, 129–139 (2011). https://doi.org/10.1007/s11010-010-0647-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0647-7

Keywords

Navigation