Skip to main content

Advertisement

Log in

Differential miRNA expression and their target genes between NGX6-positive and negative colon cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nasopharyngeal carcinoma-associated gene 6 (NGX6) was shown to be a novel putative tumor suppressor gene in colon cancer. The purpose of this study is to investigate its role in regulation of miRNA expression for in the hopes of translating this data into a novel strategy in control of colon cancer. In this study colon cancer HT-29 cells were stably transfected with NGX6 or vector-only plasmid and then subjected to miRNA array analysis, and Q-RT-PCR was then used to verify miRNA array data. Then bioinformatic analyses using Sanger, Target Scan, and MicroRNA software were performed to obtain data on the target genes of each miRNA and define their function. Our results showed that 14 miRNAs were found to be differentially expressed in NGX6-transfected cells compared to the control cells. In particular, miR-126, miR-142-3p, miR-155, miR-552, and miR-630 were all upregulated, whereas miR-146a, miR-152, miR-205, miR-365, miR-449, miR-518c, miR-584, miR-615, and miR-622 were downregulated after NGX6 transfection. Q-RT-PCR confirmed all of these miRNAs, and invalidated miR-552 and miR-630. Furthermore, bioinformatic analyses of these 12 miRNAs, among these miRNAs, target genes of miR-615 are unclear, another 11 miRNAs produced a total of 254 potential target genes and further study showed that these genes together formed a regulatory network that contributes to apoptosis, mobility/migration, hydrolysis activity, and molecular signaling through targeting JNK and Notch pathways. Taken together, these results have suggested that NGX6 plays an important role in regulation of apoptosis, mobility/migration, and hydrolase as well as activity of JNK and Notch pathways through NGX6-mediated miRNA expression. Further investigation will reveal the function of these differentially expressed miRNAs and verify expression of the miRNA-targeted genes for development of novel strategies for better control of colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cancer Facts & Figures (2009). www.cancer.org

  2. DeVita VT Jr, Lawrence TS, Rosenberg SA (2008) Cancer: principles and practice of oncology, 8th edn. Lippincott Williams & Wilkins, New York

    Google Scholar 

  3. McManus MT (2003) MicroRNAs and cancer. Semin Cancer Biol 13:253–258

    Article  CAS  PubMed  Google Scholar 

  4. Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122:6–7

    Article  CAS  PubMed  Google Scholar 

  5. Mendell JT (2005) MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4:1179–1184

    Article  CAS  PubMed  Google Scholar 

  6. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  CAS  PubMed  Google Scholar 

  7. Michael SM, O’Connor MZ, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    CAS  PubMed  Google Scholar 

  8. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  9. Yang JB, Bin LH, Li ZH, Zhang XH, Qian J, Zhang BC, Zhou M, Xie Y, Deng LW, Li GY (2000) Refined localization and cloning of a novel putative tumor suppressor gene associated with nasopharyngeal carcinoma on chromosome 9p21–22. Clin J Cancer 19(1):6–9

    Google Scholar 

  10. Ma J, Zhou J, Fan S, Wang L, Li X, Yan Q, Zhou M, Liu H, Zhang Q, Zhou H, Gan K, Li Z, Peng C, Xiong W, Tan C, Shen S, Yang J, Li J, Li G (2005) Role of a novel EGF-like domain-containing gene NGX6 in cell adhesion modulation in nasopharyngeal carcinoma cells. Carcinogenesis 26:281–291

    Article  CAS  PubMed  Google Scholar 

  11. Zhang XM, Wang XY, Sheng SR, Wang JR, Li J (2003) Expression of tumor related genes NGX6, NAG-7, BRD7 in gastric and colorectal cancer. World J Gastroenterol 9:1729–1733

    CAS  PubMed  Google Scholar 

  12. Wang XY, Shen SR, Liu F, Li XL, Fan SQ (2006) Effects of NGX6 gene on cell cycle in colon cancer cell line HT-29. Prog Biochem Biophys 33:45–50

    Google Scholar 

  13. Wang XY, Shen SR, Liu F, Peng Y, Li GY, Fan SQ (2008) Inhibitory effects of NGX6 gene on EGFR/K-ras/JNK/c-Jun/cyclin D1 signal pathway in the colon cancer. Prog Biochem Biophys 35:570–576

    Google Scholar 

  14. Ma J, Li J, Zhou J, Li XL, Tang K, Zhou M, Yang JB, Yan Q, Shen SR, Hu GX, Li GY (2002) Profiling genes differentially expressed in NGX6 overexpressed nasopharyngeal carcinoma cells by cDNA array. J Cancer Res Clin Oncol 128:683–690

    Article  CAS  PubMed  Google Scholar 

  15. Guo Q, Wu M, Lian P, Liao M, Xiao Z, Wang X, Shen S (2009) Synergistic effect of indomethacin and NGX6 on proliferation and invasion by human colorectal cancer cells through modulation of the Wnt/beta-catenin signaling pathway. Mol Cell Biochem 330:71–81

    Article  CAS  PubMed  Google Scholar 

  16. Peng S, Fan S, Li X, Wang L, Liu H, Zhou M, Wang L, Shen S, Li G (2007) The expression of ezrin in NPC and its interaction with NGX6, a novel candidate suppressor. Cancer Sci 98(3):341–349

    Article  CAS  PubMed  Google Scholar 

  17. Liu B, Peng XC, Zheng XL, Wang J, Qin YW (2009) miR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung cancer 66(2):169–175

    Article  PubMed  Google Scholar 

  18. Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, Zheng ZM (2008) Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PloS One 3:2557

    Article  Google Scholar 

  19. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14(11):2348–2360

    Article  CAS  PubMed  Google Scholar 

  20. Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B, de la Chapelle A (2009) Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA 106(5):1502–1505

    Article  CAS  PubMed  Google Scholar 

  21. Edmonds MD, Hurst DR, Vaidya KS, Stafford LJ, Chen D, Welch DR (2009) Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression. Int J Cancer 125(8):1778–1785

    Article  CAS  PubMed  Google Scholar 

  22. Iorio MV, Casalini P, Piovan C, Di Leva G, Merlo A, Triulzi T, Ménard S, Croce CM, Tagliabue E (2009) MicroRNA-205 regulates HER3 in human breast cancer. Cancer Res 69(6):2195–2200

    Article  CAS  PubMed  Google Scholar 

  23. Wu H, Zhu S, Mo YY (2009) Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 19(4):439–448

    Article  CAS  PubMed  Google Scholar 

  24. Wu W, Lin Z, Zhuang Z, Liang X (2009) Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev 18(1):50–55

    Article  CAS  PubMed  Google Scholar 

  25. Chung TK, Cheung TH, Huen NY, Wong KW, Lo KW, Yim SF, Siu NS, Wong YM, Tsang PT, Pang MW, Yu MY, To KF, Mok SC, Wang VW, Li C, Cheung AY, Doran G, Birrer MJ, Smith DI, Wong YF (2009) Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women. Int J Cancer 124(6):1358–1365

    Article  CAS  PubMed  Google Scholar 

  26. Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES (2008) Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 54(10):1696–1704

    Article  CAS  PubMed  Google Scholar 

  27. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67(18):8699–8707

    Article  CAS  PubMed  Google Scholar 

  28. Sekharam M, Nasir A, Kaiser HE, Coppola D (2003) Insulin-like growth factor 1 receptor activates c-SRC and modifies transformation and motility of colon cancer in vitro. Anticancer Res 23(2B):1517–1524

    CAS  PubMed  Google Scholar 

  29. Sun Q, Wang Y, Zhang Y, Liu F, Cheng X, Hou N, Zhao X, Yang X (2007) Expression profiling reveals dysregulation of cellular cytoskeletal genes in HBx-induced hepatocarcinogenesis. Cancer Biol Ther 6(5):668–674

    Article  CAS  PubMed  Google Scholar 

  30. Lau WM, Weber KL, Doucet M, Chou YT, Brady K, Kowalski J, Tsai HL, Yang J, Kominsky SL (2010) Identification of prospective factors promoting osteotropism in breast cancer: a potential role for CITED2. Int J Cancer 126(4):876–884

    CAS  PubMed  Google Scholar 

  31. Li L, Miyamoto M, Ebihara Y, Mega S, Takahashi R, Hase R, Kaneko H, Kadoya M, Itoh T, Shichinohe T, Hirano S, Kondo S (2006) DRD2/DARPP-32 expression correlates with lymph node metastasis and tumor progression in patients with esophageal squamous cell carcinoma. World J Surg 30(9):1672–1679

    Article  PubMed  Google Scholar 

  32. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802(4):396–405

    CAS  PubMed  Google Scholar 

  33. Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66:1631–1646

    Article  CAS  PubMed  Google Scholar 

  34. Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, Lockwood G, Gallinger S, Egan SE (2008) Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol 33(6):1223–1229

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Basic Research Program of China (973) (#2006CB910503), National Natural Sciences Foundation of China (#30500238 and 30770972), China Postdoctoral Science Foundation (#20060400266), and Hunan Provincial Natural Science Foundation (#06JJZ0068, 09JJ3066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Rong Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XY., Wu, MH., Liu, F. et al. Differential miRNA expression and their target genes between NGX6-positive and negative colon cancer cells. Mol Cell Biochem 345, 283–290 (2010). https://doi.org/10.1007/s11010-010-0582-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0582-7

Keywords

Navigation