Skip to main content
Log in

DRD2/DARPP-32 Expression Correlates with Lymph Node Metastasis and Tumor Progression in Patients with Esophageal Squamous Cell Carcinoma

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Dopamine receptors (DRs) are members of seven transmembrane domain trimeric guanosine 5’-triphosphate (GTP)-binding protein-coupled receptor family. Through dopamine receptor activation, dopamine plays a significant role in regulating gene expression, such as induced tumor cell migration.

Materials and Methods

We investigated DRD1 and DRD2 expressions in patients with esophageal squamous cell carcinoma (ESCC) for immunohistochemistry and analyzed differences between DRD1, DRD2, and DARPP-32 expressions of clinicopathological features in 122 patients with ESCC.

Results

DRD1 immunostaining correlated with the pathologic grade (P = 0.0127), and DRD2 immunostaining correlated with the pathologic stage (P = 0.0432) and pN classification (P = 0.0112). A significant correlation was found between DRD1 and DRD2 expression (P = 0.0292). However, no correlation was observed between DRD1/DRD2 expression and DARPP-32 expression (P = 0.4555 and 0.4774, respectively). No correlation was observed between the DRD1/DRD2 expression and patient prognosis. To find the cooperative role between DRD1, DRD2, and DARPP-32 expressions, patients were classified into the different groups. In the DRD2/DARPP-32 combination, the (+/−) group was significantly correlated with pathologic stage (P = 0.0006), lymph node metastasis (P = 0.0001), pT (P = 0.0287), and tumor size (P = 0.0202). Moreover, patients with this combination showed a lower survival rate compared with the other three groups (P = 0.0287).

Conclusions

We conclude that DRD2/DARPP-32 expression is associated with tumor progression and that DRD2/DARPP-32 expressions may help predict prognosis in patients with ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. Ando N, Iizuka T, Kakegawa T, et al. A randomized trial of surgery with and without chemotherapy for localized squamous carcinoma of the thoracic esophagus, the Japan Clinical Oncology Group Study. J Thorac Cardiovasc Surg 1997;114:205–209

    Article  PubMed  CAS  Google Scholar 

  2. Ando N, Ozawa S, Kitagawa Y, et al. Improvement in the results of surgical treatment of advanced squamous esophageal carcinoma during 15 consecutive years. Ann Surg 2000;232:225–232

    Article  PubMed  CAS  Google Scholar 

  3. Collard JM, Otte JB, Fiasse R, et al. Skeletonizing en bloc esophagectomy for cancer. Ann Surg 2001;234:25–32

    Article  PubMed  CAS  Google Scholar 

  4. Komukai S, Nishimaki T, Watanabe H, et al. Significance of immunohistochemically demonstrated micrometastases to lymph nodes in esophageal cancer with histologically negative nodes. Surgery 2000;127:40–46

    Article  PubMed  CAS  Google Scholar 

  5. Entschladen F, Lang K, Drell TL, et al. Neurotransmitters are regulators for the migration of tumor cells and leukocytes. Cancer Immunol Immunother 2002;51:467–482

    Article  PubMed  CAS  Google Scholar 

  6. Lang K, Drell TL IV, Lindecke A, et al. Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int J Cancer 2004;112:231–238

    Article  PubMed  CAS  Google Scholar 

  7. Missale C, Nash SR, Robinson SW, et al. Dopamine receptors from structure to function. Physiol Rev 1998;78:189–225

    PubMed  CAS  Google Scholar 

  8. Hemmings HC Jr, Greengard P, Tung HY, et al. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 1984;310:503–505

    PubMed  CAS  Google Scholar 

  9. Yan Z, Hsieh-Wilson L, Feng J, et al. Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nat Neurosci 1999;2:13–17

    Article  PubMed  CAS  Google Scholar 

  10. Montmayeur JP, Bausero P, Amlaiky N, et al. Differential expression of the mouse D2 dopamine receptor isoforms. FEBS Lett 1991;278:239–243

    Article  PubMed  CAS  Google Scholar 

  11. Nishi A, Snyder GL, Greengard P. Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci 1997;17:8147–8155

    PubMed  CAS  Google Scholar 

  12. Picardo M, Passi S, Nazzaro-Porro M, et al. Mechanism of antitumoral activity of catechols in culture. Biochem Pharmacol 1987;36:417–425

    Article  PubMed  CAS  Google Scholar 

  13. Wick MM. Levodopa/dopamine analogs as inhibitors of DNA synthesis in human melanoma cells. J Invest Dermatol 1989;92:329–331

    Article  Google Scholar 

  14. Johnson DE, Ochieng J, Evans SL. The growth inhibitory properties of a dopamine agonist (SKF 38393) on MCF-7 cells. Anticancer Drugs 1995;6:471–474

    Article  PubMed  CAS  Google Scholar 

  15. Saha B, Mondal AC, Basu S, et al. Circulating dopamine level, in lung carcinoma patients, inhibits proliferation and cytotoxicity of CD4+ and CD8+ T cells by D1 dopamine receptors: an in vitro analysis. Int Immunopharmacol 2001;1:1363–1374

    Article  PubMed  CAS  Google Scholar 

  16. Ishibashi M, Fujisawa M, Furue H, et al. Inhibition of growth of human small cell lung cancer by bromocriptine. Cancer Res 1994;54:3442–3446

    PubMed  CAS  Google Scholar 

  17. Basu S, Dasgupta PS. Alteration of dopamine D2 receptors in human malignant stomach tissue. Dig Dis Sci 1997;42:1260–1264

    Article  PubMed  CAS  Google Scholar 

  18. Scemama JL, Ruellan C, Clerc P, et al. Dopamine receptors in a human colonic cancer cell line (HT29). Some receptor-related biological effects of dopamine. Int J Cancer 1984;34:675–679

    PubMed  CAS  Google Scholar 

  19. Basu S, Dasgupta PS. Decreased dopamine receptor expression and its second-messenger cAMP in malignant human colon tissue. Dig Dis Sci 1999;44:916–921

    Article  PubMed  CAS  Google Scholar 

  20. Sokoloff P, Riou JF, Martres MP, et al. Presence of dopamine D-2 receptors in human tumoral cell lines. Biochem Biophys Res Commun 1989;162:575–582

    Article  PubMed  CAS  Google Scholar 

  21. Comings DE, Gade-Andavolu R, Cone LA, et al. A multigene test for the risk of sporadic breast carcinoma. Cancer 2003;97:2160–2170

    Article  PubMed  CAS  Google Scholar 

  22. Lemmer K, Ahnert-Hilger G, Hopfner M, et al. Expression of dopamine receptors and transporter in neuroendocrine gastrointestinal tumor cells. Life Sci 2002;71:667–678

    Article  PubMed  CAS  Google Scholar 

  23. Steinert H, Huch-Boni RA, Boni R, et al. Dopamine-D2 receptor scintigraphy with 123I-iodobenzofuran in malignant melanoma. Nuklearmedizin 1995;34:146–150

    PubMed  CAS  Google Scholar 

  24. Boni R, Lichtensteiger W, Steinert HC, et al. D1 dopamine receptors are not expressed in human melanoma. Melanoma Res 1997;7:117–119

    Article  PubMed  CAS  Google Scholar 

  25. Bodei L, Hofland LJ, Ferone D, et al. In vivo and in vitro detection of dopamine d2 receptors in uveal melanomas. Cancer Biother Radiopharm, 2003;18:895–902

    Article  CAS  Google Scholar 

  26. Pivonello R, Ferone D, de Herder WW, et al. Dopamine receptor expression and function in human normal adrenal gland and adrenal tumors. J Clin Endocrinol Metab 2004;89:4493–4502

    Article  PubMed  CAS  Google Scholar 

  27. Pivonello R, Ferone D, de Herder WW, et al. Dopamine receptor expression and function in corticotroph pituitary tumors. J Clin Endocrinol Metab 2004;89:2452–2462

    Article  PubMed  CAS  Google Scholar 

  28. Greengard P, Allen PB, Nairn AC. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 1999;23:435–447

    Article  PubMed  CAS  Google Scholar 

  29. Ebihara Y, Miyamoto M, Fukunaga A, et al. DARPP-32 expression arises after a phase of dysplasia in oesophageal squamous cell carcinoma. Br J Cancer 2004;91:119–123

    Article  PubMed  CAS  Google Scholar 

  30. Svenningsson P, Nishi A, Fisone G, et al. DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 2004;44:269–296

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the contributions of Mr. Hiraku Shida and Ms. Rika Osanai for their technical support in immunohistochemistry and the many physicians who cared for patients at the affiliated hospitals of Surgical Oncology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Miyamoto, M., Ebihara, Y. et al. DRD2/DARPP-32 Expression Correlates with Lymph Node Metastasis and Tumor Progression in Patients with Esophageal Squamous Cell Carcinoma. World J. Surg. 30, 1672–1679 (2006). https://doi.org/10.1007/s00268-006-0035-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-006-0035-3

Keywords

Navigation