Skip to main content

Advertisement

Log in

Bax is upregulated by p53 signal pathway in the SPE B-induced apoptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We identify integrin αvβ3 and Fas as receptors for the streptococcal pyrogenic exotoxin B (SPE B), and G308S (SPE B mutant, glycine at residue 308 is changed to serine), which interacts with Fas only, in our previous study. Here, we explore the signal pathways that regulate proapoptotic protein expression after SPE B stimulation. We find that both SPE B and G308S can stimulate the serine phosphorylation of p53, and p53 phosphorylation is inhibited by the anti-Fas antibody but not by anti-αVβ3 antibody. p38 inhibitor and siRNA decrease the activation and translocation of p53 into the nucleus, which executes its transcription activity. These results indicate that after SPE B treatment, p53 is activated and p38 is the upstream of p53. p38 siRNA also decreases the binding of p53 to the bax promoter and interferes with the association of p53 and STAT1. p53, p38, and STAT1 siRNAs downregulate SPE B-induced Bax expression. This shows that SPE B activates the bax promoter via p38/p53 signal pathways through the Fas receptor, and that STAT1 acts as a coactivator of p53. In addition, p38 and p53 siRNAs inhibit SPE B-induced apoptosis. This is consistent with the findings that SPE B upregulates Bax expression through p38/p53 signal pathways that enhance cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Musser JM, Hauser AR, Kim MH, Schlievert PM, Nelson K, Selander RK (1991) Streptococcus pyogenes causing toxic-shock-like syndrome and other invasive diseases: clonal diversity and pyrogenic exotoxin expression. Proc Natl Acad Sci USA 88:2668–2672

    Article  CAS  PubMed  Google Scholar 

  2. Schlievert PM, Assimacopoulos AP, Cleary PP (1996) Severe invasive group A streptococcal disease: clinical description and mechanisms of pathogenesis. J Lab Clin Med 127:13–22

    Article  CAS  PubMed  Google Scholar 

  3. Stevens DL, Tanner MH, Winship J, Swarts R, Ries KM, Schlievert PM, Kaplan E (1989) Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin A. N Engl J Med 321:1–7

    Article  CAS  PubMed  Google Scholar 

  4. Chaussee MS, Gerlach D, Yu CE, Ferretti JJ (1993) Inactivation of the streptococcal erythrogenic toxin B gene (speB) in Streptococcus pyogenes. Infect Immun 61:3719–3723

    CAS  PubMed  Google Scholar 

  5. Chen CY, Luo SC, Kuo CF, Lin YS, Wu JJ, Lin MT, Liu CC, Jeng WY, Chuang WJ (2003) Maturation processing and characterization of streptopain. J Biol Chem 278:17336–17343

    Article  CAS  PubMed  Google Scholar 

  6. Hauser AR, Schlievert PM (1990) Nucleotide sequence of the streptococcal pyrogenic exotoxin type B gene and relationship between the toxin and the streptococcal proteinase precursor. J Bacteriol 172:4536–4542

    CAS  PubMed  Google Scholar 

  7. Kuo CF, Wu JJ, Lin KY, Tsai PJ, Lee SC, Jin YT, Lei HY, Lin YS (1998) Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect Immun 66:3931–3935

    CAS  PubMed  Google Scholar 

  8. Tsai WH, Chang CW, Chuang WJ, Lin YS, Wu JJ, Liu CC, Chang WT, Lin MT (2004) Streptococcal pyrogenic exotoxin B-induced apoptosis in A549 cells is mediated by a receptor- and mitochondrion-dependent pathway. Infect Immun 72:7055–7062

    Article  CAS  PubMed  Google Scholar 

  9. Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10:431–442

    Article  CAS  PubMed  Google Scholar 

  10. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  11. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    Article  CAS  PubMed  Google Scholar 

  12. Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694

    Article  CAS  PubMed  Google Scholar 

  13. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    Article  CAS  PubMed  Google Scholar 

  14. Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS (2002) BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4:842–849

    Article  CAS  PubMed  Google Scholar 

  15. Wu GS, Burns TF, McDonald ER III, Jiang W, Meng R, Krantz ID, Kao G, Gan DD, Zhou JY, Muschel R, Hamilton SR, Spinner NB, Markowitz S, Wu G, El-Deiry WS (1997) KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17:141–143

    Article  CAS  PubMed  Google Scholar 

  16. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7:673–682

    Article  CAS  PubMed  Google Scholar 

  17. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  CAS  PubMed  Google Scholar 

  18. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  CAS  PubMed  Google Scholar 

  19. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704

    Article  CAS  PubMed  Google Scholar 

  20. Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E, Fornace AJ Jr (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854

    Article  CAS  PubMed  Google Scholar 

  21. Thornborrow EC, Manfredi JJ (2001) The tumor suppressor protein p53 requires a cofactor to activate transcriptionally the human BAX promoter. J Biol Chem 276:15598–15608

    Article  CAS  PubMed  Google Scholar 

  22. Lee YJ, Kuo HC, Chu CY, Wang CJ, Lin WC, Tseng TH (2003) Involvement of tumor suppressor protein p53 and p38 MAPK in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells. Biochem Pharmacol 66:2281–2289

    Article  CAS  PubMed  Google Scholar 

  23. Li DW, Fass U, Huizar I, Spector A (1998) Okadaic acid-induced lens epithelial cell apoptosis requires inhibition of phosphatase-1 and is associated with induction of gene expression including p53 and bax. Eur J Biochem 257:351–361

    Article  CAS  PubMed  Google Scholar 

  24. Townsend PA, Scarabelli TM, Davidson SM, Knight RA, Latchman DS, Stephanou A (2004) STAT-1 interacts with p53 to enhance DNA damage-induced apoptosis. J Biol Chem 279:5811–5820

    Article  CAS  PubMed  Google Scholar 

  25. Holmstrom TH, Tran SE, Johnson VL, Ahn NG, Chow SC, Eriksson JE (1999) Inhibition of mitogen-activated kinase signaling sensitizes HeLa cells to Fas receptor-mediated apoptosis. Mol Cell Biol 19:5991–6002

    CAS  PubMed  Google Scholar 

  26. Deng Y, Ren X, Yang L, Lin Y, Wu X (2003) A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell 115:61–70

    Article  CAS  PubMed  Google Scholar 

  27. Porras A, Zuluaga S, Black E, Valladares A, Alvarez AM, Ambrosino C, Benito M, Nebreda AR (2004) p38α mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol Biol Cell 15:922–933

    Article  CAS  PubMed  Google Scholar 

  28. Tsai WH, Chang CW, Lin YS, Chuang WJ, Wu JJ, Liu CC, Tsai PJ, Lin MT (2008) Streptococcal pyrogenic exotoxin B-induced apoptosis in A549 cells is mediated through αvβ3 integrin and Fas. Infect Immun 76:1349–1357

    Article  CAS  PubMed  Google Scholar 

  29. Aiyar A, Xiang Y, Leis J (1996) Site-directed mutagenesis using overlap extension PCR. Methods Mol Biol 57:177–191

    CAS  PubMed  Google Scholar 

  30. Chang CW, Tsai WH, Chuang WJ, Lin YS, Wu JJ, Liu CC, Chang WT, Lin MT (2009) Procaspase 8 and Bax are upregulated by distinct pathways in the SPE B-induced apoptosis. J Biol Chem 284:33195–33205

    Article  CAS  PubMed  Google Scholar 

  31. Kim H, Kokkotou E, Na X, Rhee SH, Moyer MP, Pothoulakis C, Lamont JT (2005) Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129:1875–1888

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Yadav JS (2007) Global gene expression changes underlying Stachybotrys chartarum toxin-induced apoptosis in murine alveolar macrophages: evidence of multiple signal transduction pathways. Apoptosis 12:535–548

    Article  CAS  PubMed  Google Scholar 

  33. Ossina NK, Cannas A, Powers VC, Fitzpatrick PA, Knight JD, Gilbert JR, Shekhtman EM, Tomei LD, Umansky SR, Kiefer MC (1997) Interferon-γ modulates a p53-independent apoptotic pathway and apoptosis-related gene expression. J Biol Chem 272:16351–16357

    Article  CAS  PubMed  Google Scholar 

  34. Dai C, Krantz SB (1999) Interferon γ induces upregulation and activation of caspases 1, 3, and 8 to produce apoptosis in human erythroid progenitor cells. Blood 93:3309–3316

    CAS  PubMed  Google Scholar 

  35. Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17:631–636

    Article  CAS  PubMed  Google Scholar 

  36. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    CAS  PubMed  Google Scholar 

  37. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590

    Article  CAS  PubMed  Google Scholar 

  38. Schuler M, Green DR (2001) Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 29:684–688

    Article  CAS  PubMed  Google Scholar 

  39. Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202–16212

    Article  CAS  PubMed  Google Scholar 

  40. Akhtar RS, Geng Y, Klocke BJ, Roth KA (2006) Neural precursor cells possess multiple p53-dependent apoptotic pathways. Cell Death Differ 13:1727–1739

    Article  CAS  PubMed  Google Scholar 

  41. Navas TA, Nguyen AN, Hideshima T, Reddy M, Ma JY, Haghnazari E, Henson M, Stebbins EG, Kerr I, O’Young G, Kapoun AM, Chakravarty S, Mavunkel B, Perumattam J, Luedtke G, Dugar S, Medicherla S, Protter AA, Schreiner GF, Anderson KC, Higgins LS (2006) Inhibition of p38α MAPK enhances proteasome inhibitor-induced apoptosis of myeloma cells by modulating Hsp27, Bcl-XL, Mcl-1 and p53 levels in vitro and inhibits tumor growth in vivo. Leukemia 20:1017–1027

    Article  CAS  PubMed  Google Scholar 

  42. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    Article  CAS  PubMed  Google Scholar 

  43. Perfettini JL, Castedo M, Nardacci R, Ciccosanti F, Boya P, Roumier T, Larochette N, Piacentini M, Kroemer G (2005) Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. J Exp Med 201:279–289

    Article  CAS  PubMed  Google Scholar 

  44. Sabatini N, Di Giacomo V, Rapino M, Rana R, Garaci G, Cataldi A (2005) JNK/p53 mediated cell death response in K562 exposed to etoposide-ionizing radiation combined treatment. J Cell Biochem 95:611–619

    Article  CAS  PubMed  Google Scholar 

  45. Chang CW, Wu SY, Chuang WJ, Lin YS, Wu JJ, Liu CC, Chang WT, Lin MT (2009) The IL-8 production by streptococcal pyrogenic exotoxin B. Exp Biol Med 234:1316–1326

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Jonathan Courtenay for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Wen Chang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement 1

. The level of Bax is not upregulated in p53 null H1299 cell. H1299 cell lysates are extracted and probed with an anti-p53 antibody. The membrane is then reprobed with an anti-β-actin antibody (a). After transfection with p53 reporter, cells (2 × 105) are treated with or without SPE B (20 μg/ml) and the luciferase activity is measured. Data are the means ± SEM of triplicate cultures (b). Cells (3 × 106) are treated with or without SPE B (20 μg/ml) for 5 h. Total RNA is prepared from cells and subjected to RT-PCR analysis of Bax mRNA expression. The cDNA is amplified with specific oligos for Bax and β-actin (c). Cells (2 × 105) are treated with or without SPE B (20 μg/ml) for 10 h. Total cell lysates are probed with an anti-Bax antibody. The membrane is then reprobed with an anti-β-actin antibody (d)

Supplement 2

. Bax translocation into mitochondria is not regulated by p53, and no p53 translocation into mitochondria is detected after SPE B treatment. Cells (2 × 105) are incubated with SPE B (20 μg/ml) with or without siRNA for various times. The mitochondria and cytosol extracts are probed with an anti-Bax antibody (a) or anti-p53 antibody (b). The membrane is then reprobed with an anti-β-actin antibody

Supplement 3

. The mRNA and protein levels of p53 are not increased after SPE B stimulation. Cells (3 × 106) are treated with SPE B (20 μg/ml) for various times. Total RNA is prepared from A549 cells and subjected to RT-PCR analysis of mRNA expression. The cDNA is amplified with specific oligos for p53 and β-actin (a). Cells (2 × 105) are treated with SPE B (20 μg/ml) for various times. Total cell lysates are probed with an anti-p53 antibody. The membrane is then reprobed with an anti-β-actin antibody (b)

Supplement 4

. The mRNA and protein levels of PUMA are not upregulated in the presence of SPE B. Cells (3 × 106) are treated with SPE B (20 μg/ml) for various times. Total RNA is prepared from A549 cells and subjected to RT-PCR analysis of mRNA expression. The cDNA is amplified with specific oligos for PUMA and β-actin (a). Cells (2 × 105) are treated with SPE B (20 μg/ml) for various times. Total cell lysates are probed with an anti-PUMA antibody (b). The membrane is then reprobed with an anti-β-actin antibody

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WT., Chang, CW. Bax is upregulated by p53 signal pathway in the SPE B-induced apoptosis. Mol Cell Biochem 343, 271–279 (2010). https://doi.org/10.1007/s11010-010-0522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0522-6

Keywords

Navigation