Skip to main content
Log in

Global gene expression changes underlying Stachybotrys chartarum toxin-induced apoptosis in murine alveolar macrophages: Evidence of multiple signal transduction pathways

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The overall mechanism(s) underlying macrophage apoptosis caused by the toxins of the indoor mold Stachybotrys chartarum (SC) are not yet understood. In this direction, we report a microarray-based global gene expression profiling on the murine alveolar macrophage cell line (MH-S) treated with SC toxins for short (2 h) and long (24 h) periods, coinciding with the pre-apoptotic (<3 h) and progressed apoptotic stages of the treated cells, respectively. Microarray results on differential expression were validated by real-time RT-PCR analysis using representative gene targets. The toxin-regulated genes corresponded to multiple cellular processes, including cell growth, proliferation and death, inflammatory/immune response, genotoxic stress and oxidative stress, and to the underlying multiple signal transduction pathways involving MAPK-, NF-kB-, TNF-, and p53-mediated signaling. Transcription factor NF-kB showed dynamic temporal changes, characterized by an initial activation and a subsequent inhibition. Up-regulation of a battery of DNA damage-responsive and DNA repair genes in the early stage of the treatment suggested a possible role of genotoxic stress in the initiation of apoptosis. Simultaneous expression changes in both pro-survival genes and pro-apoptotic genes indicated the role of a critical balance between the two processes in SC toxin-induced apoptosis. Taken together, the results imply that multiple signaling pathways underlie the SC toxin-induced apoptosis in alveolar macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kuhn RC, Trimble MW, Hofer V, Lee M, Nassof RS (2005) Prevalence and airborne spore levels of Stachybotrys spp. in 200 houses with water incursions in Houston, Texas. Can J Microbiol 51:25–28

    Article  PubMed  CAS  Google Scholar 

  2. Shelton BG, Kirkland KH, Flanders WD, Morris GK (2002) Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microbiol 68:1743–1753

    Article  PubMed  CAS  Google Scholar 

  3. Meklin T, Husman T, Vepsalainen A, et al (2002) Indoor air microbes and respiratory symptoms of children in moisture damaged and reference schools. Indoor Air 12:175–183

    Article  PubMed  CAS  Google Scholar 

  4. Etzel RA, Montana E, Sorenson WG, et al (1998) Acute pulmonary hemorrhage in infants associated with exposure to Stachybotrys atra and other fungi. Arch Pediatr Adolesc Med 152:757–762

    PubMed  CAS  Google Scholar 

  5. Brasel TL, Douglas DR, Wilson SC, Straus DC (2005) Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins on particulates smaller than conidia. Appl Environ Microbiol 71:114–122

    Article  PubMed  CAS  Google Scholar 

  6. Dorger M, Krombach F (2002) Response of alveolar macrophages to inhaled particulates. Eur Surg Res 4:47–52

    Google Scholar 

  7. Wang H, Yadav JS (2006) DNA damage, redox changes, and associated stress-inducible signaling events underlying the apoptosis and cytotoxicity in murine alveolar macrophage cell line MH-S by methanol-extracted Stachybotrys chartarum toxins. Toxicol Appl Pharmacol 214:297–308

    Article  PubMed  CAS  Google Scholar 

  8. Shifrin VI, Anderson P (1999) Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J Biol Chem 274:13985–13992

    Article  PubMed  CAS  Google Scholar 

  9. Yang GH, Jarvis BB, Chung YJ, Pestka JJ (2000) Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation. Toxicol Appl Pharmacol 164:149–160

    Article  PubMed  CAS  Google Scholar 

  10. Yike I, Rand TG, Dearborn DG (2005) Acute inflammatory responses to Stachybotrys chartarum in the lungs of infant rats: time course and possible mechanisms. Toxicol Sci 84:408–417

    Article  PubMed  CAS  Google Scholar 

  11. Nagase M, Shiota T, Tsushima A, et al (2002) Molecular mechanism of satratoxin-induced apoptosis in HL-60 cells: activation of caspase-8 and caspase-9 is involved in activation of caspase-3. Immunol Lett 84:23–27

    Article  PubMed  CAS  Google Scholar 

  12. Jarvis BB, Sorenson WG, Hintikka EL, et al (1998) Study of toxin production by isolates of Stachybotrys chartarum and Memnoniella echinata isolated during a study of pulmonary hemosiderosis in infants. Appl Environ Microbiol 64:3620–3625

    PubMed  CAS  Google Scholar 

  13. Rao CY, Brain JD, Burge HA (2000) Reduction of pulmonary toxicity of Stachybotrys chartarum spores by methanol extraction of mycotoxins. Appl Environ Microbiol 66:2817–2821

    Article  PubMed  CAS  Google Scholar 

  14. Sartor M, Schwanekamp J, Halbleib D et al (2004) Microarray results improve significantly as hybridization approaches equilibrium. Biotechniques 36:790–796.

    PubMed  Google Scholar 

  15. Hiom K (1999) DNA repair: Rad52 - the means to an end. Curr Biol 9:446–448

    Article  Google Scholar 

  16. Celeste A, Petersen S, Romanienko PJ, et al (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927

    Article  PubMed  CAS  Google Scholar 

  17. Weiss RS, Leder P, Vaziri C (2003) Critical role for mouse Hus1 in an S-phase DNA damage cell cycle checkpoint. Mol Cell Biol 23:791–803

    Article  PubMed  CAS  Google Scholar 

  18. Le May N, Dubaele S, De Santis LP, Billecocq A, Bouloy M, Egly JM (2004) TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell 116:541–550

    Article  PubMed  CAS  Google Scholar 

  19. de Wind N, Dekker M, Claij N et al (1999) HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat Genet 23:359–362

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Y, Yuan F, Wu X, Taylor JS, Wang Z (2001) Response of human DNA polymerase iota to DNA lesions. Nucleic Acids Res 9:928–935

    Article  Google Scholar 

  21. Guo C, Fischhaber PL, Luk-Paszyc MJ et al (2003) Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J 22:6621–6630

    Article  PubMed  CAS  Google Scholar 

  22. Kozak KR, Prusakiewicz JJ, Marnett LJ (2004) Oxidative metabolism of endocannabinoids by COX-2. Curr Pharm Des 10:659–667

    Article  PubMed  CAS  Google Scholar 

  23. Junn E, Han SH, Im JY, et al (2000) Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 164:6287–6295

    PubMed  CAS  Google Scholar 

  24. Hoornaert I, Marynen P, Goris J, Sciot R, Baens M (2003) MAPK phosphatase DUSP16/MKP-7, a candidate tumor suppressor for chromosome region 12p12-13, reduces BCR-ABL-induced transformation. Oncogene 22:7728–7736

    Article  PubMed  CAS  Google Scholar 

  25. Tanoue T, Moriguchi T, Nishida E (1999) Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5. J Biol Chem 274:19949–19956

    Article  PubMed  CAS  Google Scholar 

  26. Moriguchi T, Toyoshima F, Gotoh Y et al (1996) Purification and identification of a major activator for p38 from osmotically shocked cells. Activation of mitogen-activated protein kinase kinase 6 by osmotic shock, tumor necrosis factor-alpha, and H2O2. J Biol Chem 271:26981–26988

    Article  PubMed  CAS  Google Scholar 

  27. Ohkusu-Tsukada K, Tominaga N, Udono H, Yui K (2004) Regulation of the maintenance of peripheral T-cell anergy by TAB1-mediated p38 alpha activation. Mol Cell Biol 24:6957–6966

    Article  PubMed  CAS  Google Scholar 

  28. Meloche S, Gopalbhai K, Beatty BG, Scherer SW, Pellerin J (2000) Chromosome mapping of the human genes encoding the MAP kinase kinase MEK1 (MAP2K1) to 15q21 and MEK2 (MAP2K2) to 7q32. Cytogenet Cell Genet 88: 249–252

    Article  PubMed  CAS  Google Scholar 

  29. Dickinson RJ, Williams DJ, Slack DN, Williamson J, Seternes OM, Keyse SM (2002) Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase. Biochem J 364: 145–55

    PubMed  CAS  Google Scholar 

  30. Chang NS (2000) The non-ankyrin C terminus of Ikappa B alpha physically interacts with p53 in vivo and dissociates in response to apoptotic stress, hypoxia, DNA damage, and transforming growth factor-beta 1-mediated growth suppression. J Biol Chem 277:10323–10331

    Article  Google Scholar 

  31. Boyd MT, Vlatkovic N, Haines DS (2000) A novel cellular protein (MTBP) binds to MDM2 and induces a G1 arrest that is suppressed by MDM2. J Biol Chem 275:31883–31890

    Article  PubMed  CAS  Google Scholar 

  32. Shikama N, Lee CW, France S, et al (1999) A novel cofactor for p300 that regulates the p53 response. Mol Cell 4:365–376

    Article  PubMed  CAS  Google Scholar 

  33. Sheikh MS, Hollander MC, Fornance AJ Jr (2000) Role of Gadd45 in apoptosis. Biochem Pharmacol 59:43–45

    Article  PubMed  CAS  Google Scholar 

  34. Imai Y, Kimura T, Murakami A, Yajima N, Sakamaki K, Yonehara S (1999) The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature 398:777–785

    Article  PubMed  CAS  Google Scholar 

  35. Afford, SC, Ahmed-Choudhury CJ, Randhawa S et al (20001) CD40 activation-induced, Fas-dependent apoptosis and NF-kappaB/AP-1 signaling in human intrahepatic biliary epithelial cells. FASEB J 15:2345–2354

    Article  Google Scholar 

  36. Prasad KV, Ao Z, Yoon Y et al (1997) CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein. Proc Natl Acad Sci USA 94: 6346–6351

    Article  PubMed  CAS  Google Scholar 

  37. Wagner KW, Engels IH, Deveraux QL (2004) Caspase-2 can function upstream of bid cleavage in the TRAIL apoptosis pathway. J Biol Chem 279:35047–35052

    Article  PubMed  CAS  Google Scholar 

  38. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    PubMed  CAS  Google Scholar 

  39. Villunger A, Michalak EM, Coultas L, et al (2003) p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302:1036–1038

    Article  PubMed  CAS  Google Scholar 

  40. Marani M, Tenev T, Hancock D, Downward J, Lemoine NR (2002) Identification of novel isoforms of the BH3 domain protein Bim which directly activate Bax to trigger apoptosis. Mol Cell Biol 22:3577–3589

    Article  PubMed  CAS  Google Scholar 

  41. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18:6853–6866

    Article  PubMed  CAS  Google Scholar 

  42. Zampetaki A, Mitsialis SA, Pfeilschifter J, Kourembanas S (2004) Hypoxia induces macrophage inflammatory protein-2 (MIP-2) gene expression in murine macrophages via NF-kappaB: the prominent role of p42/ p44 and PI3 kinase pathways. FASEB J 18:1090–1092

    PubMed  CAS  Google Scholar 

  43. Carpentier I, Beyaert R (1999) TRAF1 is a TNF inducible regulator of NF-kappaB activation. FEBS Lett 460:246–250

    Article  PubMed  CAS  Google Scholar 

  44. Tao W, Pennica D, Xu L, Kalejta RF, Levine AJ (2001) Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev 15:1796–1807

    Article  PubMed  CAS  Google Scholar 

  45. Schuster N, Krieglstein K (2002) Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res 307:1–14

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported in part by the University of Cincinnati Research Incentive Award (JSY) and the University Graduate Scholarship Award (HW). We thank Dr. Mario Medvedovic of the Department of Environmental Health for the statistical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagjit S. Yadav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Yadav, J.S. Global gene expression changes underlying Stachybotrys chartarum toxin-induced apoptosis in murine alveolar macrophages: Evidence of multiple signal transduction pathways. Apoptosis 12, 535–548 (2007). https://doi.org/10.1007/s10495-006-0008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0008-x

Keywords

Navigation