Skip to main content

Advertisement

Log in

Oxidant/anti-oxidant dynamics in patients with advanced cervical cancer: correlation with treatment response

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cervical cancer is the most common cancer in Indian women. Oxidative stress is potentially harmful to cells and ROS are involved in multistage carcinogenesis, in initiation and promotion. The aim was to study the alterations in the circulating pro-/anti-oxidants in advanced cervical cancer patients, before and after neoadjuvant chemoradiation and to assess the relevance of the variation in the levels to therapeutic response. 90 patients with advanced cancer cervix (FIGO IIIa-IVa) and 90 healthy controls were enrolled. Blood samples were collected: before and after chemotherapy, after radiation and after 1 year on follow-up. Pro-/anti-oxidant levels were estimated using standard methods. Response to therapy was assessed during and after therapy and after 1 year of follow-up. The pre-treatment levels of plasma lipid peroxide were significantly elevated; while antioxidant levels were lowered in cancer patients; when compared to controls. After chemotherapy, lipid peroxidation showed a significant decline in complete responders, as compared with partial/non-responders and remained highly significant after therapy and during follow-up. Anti-oxidant enzymes showed a mild increase (P < 0.05), after chemotherapy in complete responders, as compared with partial/non-responders and remained highly significant after therapy and on follow-up. This important finding suggests that pre-treatment levels of antioxidant–oxidant parameters and the extent of their change during treatment can predict the therapeutic response to neoadjuvant chemoradiation in advanced cancer cervix. Oxidant–antioxidant profile merits investigation as markers of response, survival, and recurrence in larger prospective studies, which might throw light on their possible use as predictors of chemoradiosensitivity of cervical tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Notani PN (2001) Global variation in cancer incidence and mortality. Curr Sci 81:465–474

    Google Scholar 

  3. Gupte MD, Ramachandran V, Mutatkar RK (2001) Epidemiological profile of India: historical and contemporary perspectives. J Biosci 26:437–464

    Article  CAS  PubMed  Google Scholar 

  4. Cerutti P, Trump B (1991) Inflammation and oxidative stress in carcinogenesis. Cancer Cells 3:1–5

    CAS  PubMed  Google Scholar 

  5. Punnonen R, Kudo R, Punnonen K et al (1993) Activities of antioxidant enzymes and lipid peroxidation in endometrial cancer. Eur J Cancer 29A:266–269

    Article  CAS  PubMed  Google Scholar 

  6. Ushio-Fukai M, Nakamura Y (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 266:37–52

    Article  CAS  PubMed  Google Scholar 

  7. Nishikawa M (2008) Reactive oxygen species in tumor metastasis Cancer Lett 266: 53–59

  8. Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  9. Mates JM, Perez-Gomez C, de Castro IN (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603

    Article  CAS  PubMed  Google Scholar 

  10. Sun Yi (1990) Free radicals, antioxidant enzymes and carcinogenesis. Free Radical Biol Med 8:583–599

    Article  CAS  Google Scholar 

  11. Mukundan H, Bahadur AK, Kumar A et al (1999) Glutathione level and its relation to radiation therapy in patients with cancer of uterine cervix. Ind J Exp Biol 37:859–864

    CAS  Google Scholar 

  12. Bhuvarahamurthy V, Balasubramanian N, Govindasamy S (1996) Effect of radiotherapy and chemoradiotherapy on circulating antioxidant system of human cervical carcinoma. Mol Cell Biochem 158:17–23

    CAS  PubMed  Google Scholar 

  13. Ito H (1999) Radiotherapy for cervical cancer: a multi-institutional comparison. Nippon Igaku Oshasen Gokkai Zasshi 59:745–749

    CAS  Google Scholar 

  14. Kish JA, Ensley JF, Jacobs J et al (1985) A randomized trial of cisplatin and 5FU infusion and CACP and 5FU bolus for recurrent and advanced SCC of the head and neck. Cancer 56:27–40

    Article  Google Scholar 

  15. Hercbergs A, Brok F, Simoni J et al (1992) Erythrocyte glutathione and tumor response to chemotherapy. Lancet 339:1074–1076

    Article  CAS  PubMed  Google Scholar 

  16. Sharma A, Rajappa M, Saxena A et al (2007) Antioxidant status in advanced cervical cancer patients undergoing neoadjuvant chemoradiation. Br J Biomed Sci 64:23–27

    CAS  PubMed  Google Scholar 

  17. International Federation of Gynecol. Obst (1995) Staging announcement: FIGO staging of gynecologic cancers, cervical and vulva. Int J Gynecol Cancer 5:319–326

    Google Scholar 

  18. Sharma JB, Sharma A, Bahadur A et al (2006) Oxidative stress markers and antioxidant levels in normal pregnancy and pre-eclampsia. Int J Gynaec Obs 94:23–27

    Article  CAS  Google Scholar 

  19. Yagi K (1978) Lipid peroxides and human disease. Chem Physiol Lipids 45:337–351

    Article  Google Scholar 

  20. Rao KS, Recknagel RO (1968) Early onset of lipid peroxidation in rat liver after carbon tetrachloride administration. Exp Mol Pathol 9:271–278

    Article  CAS  PubMed  Google Scholar 

  21. Paglia DE, Valentine WN (1967) Study on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  22. Beutler E (1975) Red cell metabolism: a manual of biochemical methods, 2nd edn. Grune and Stratton, New York, pp 66–69

    Google Scholar 

  23. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  24. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferase the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  25. Sinha KA (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  PubMed  Google Scholar 

  26. Drabkin DL, Austin J (1932) Spectrophotometric studies, spectrophotometric constants for common hemoglobin derivatives in human, dog and rabbit blood. J Biol Chem 98:719–733

    CAS  Google Scholar 

  27. World Health Organization (1979) WHO handbook for reporting results of cancer treatment. World Health Organization, WHO Publications Centre, New York, USA

    Google Scholar 

  28. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  Google Scholar 

  29. Buzby GP, Mullen JL, Steih TP et al (1980) Host tumor interactions and nutrient supply. Cancer 45:2940–2947

    Article  CAS  PubMed  Google Scholar 

  30. Tormos C, Chaves FJ, Garcia MJ et al (2004) Role of glutathione in the induction of apoptosis and c-fos and c-jun mRNAs by oxidative stress in tumor cells. Cancer Lett 208:103–113

    Article  CAS  PubMed  Google Scholar 

  31. Manoharan S, Kolanjiappan K, Kayalvizhi et al (2002) Lipid peroxidation and antioxidant status in cervical cancer patients. J Biochem Mol Biol Biophys 6:225–227

    Article  CAS  PubMed  Google Scholar 

  32. Mila-Kierzenkowska C, Kornatowska KK, Wozniak A et al (2004) The effect of brachytherapy on antioxidant status and lipid peroxidation in patients with cancer of the uterine cervix. Cell Mol Biol Lett 9:511–518

    PubMed  Google Scholar 

  33. Sharma A, Tripathi M, Satyam A, Kumar L (2009) Study of antioxidant levels in patients with multiple myeloma. Leuk Lymphoma 50:809–815

    Article  CAS  PubMed  Google Scholar 

  34. Badjatia N, Satyam A, Singh P, Seth A, Sharma A (2009) Altered antioxidant status and lipid peroxidation in Indian patients with Urothelial bladder carcinoma. Urol Oncol (Epub ahead of print)

  35. Kumaragurparan R, Subapriya R, Kabalimoorthy J et al (2002) Antioxidant profile in circulation of patients with fibroadenoma and adenocarcinoma of the breast. Clin Biochem 35:275–279

    Article  Google Scholar 

  36. Cabelguenne A, Loriot M, Stucker I et al (2001) Glutathione-associated enzymes in head and neck carcinoma and response to neoadjuvant chemotherapy. Int J Cancer 93:725–730

    Article  CAS  PubMed  Google Scholar 

  37. Devi GS, Prasad MH, Saraswathi I et al (2000) Free radical antioxidant enzymes and lipid peroxidation in different types of leukemias. Clin Chim Acta 293:53–62

    Article  CAS  PubMed  Google Scholar 

  38. Pigeolet E, Corbisier P, Houbion A et al (1990) Glutathione peroxidase, superoxide dismutase and catalase inactivation by peroxide and oxygen derived free radical. Mech Aging Dev 51:283–297

    Article  CAS  PubMed  Google Scholar 

  39. Blum J, Fridovich I (1985) Inactivation of glutathione peroxidase by superoxide radical. Arch Biochem Biophys 240:500–508

    Article  CAS  PubMed  Google Scholar 

  40. Baker AM, Oberley LW, Cohen MB (1997) Expression of antioxidant enzymes in human prostate adenocarcinoma. Prostate 32:229–233

    Article  CAS  PubMed  Google Scholar 

  41. Aydin A, Arsova-Sarafinovska Z, Sayal A et al (2006) Oxidative stress and antioxidant status in non-metastatic prostate cancer and benign prostatic hyperplasia. Clin Biochem 36:176–179

    Article  Google Scholar 

  42. SundfoLr K, Trope′ CG, Ho¨gberg T et al (1996) Radiotherapy and neoadjuvant chemotherapy for cervical carcinoma. A randomized multicenter study of sequential cisplatin and 5-fluorouracil and radiotherapy in advanced cervical carcinoma stage 3B and 4A. Cancer 77:2371–2378

    Article  Google Scholar 

  43. Rose PG, Bundy BN, Watkins EB et al (1999) Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med 340:1144–1153

    Article  CAS  PubMed  Google Scholar 

  44. Tzioras S, Pavlidis N, Paraskevaidis E et al (2007) Effects of different chemotherapy regimens on survival for advanced cervical cancer: systematic review and meta-analysis. Cancer Treat Rev 33:24–38

    Article  CAS  PubMed  Google Scholar 

  45. Lukka H, Johnston M (2004) Concurrent cisplatin-based chemotherapy plus radiotherapy for cervical cancer: a meta-analysis. Clin Oncol 16:160–161

    Article  CAS  Google Scholar 

  46. Green J, Kirwan J, Tierney J et al (2005) Concomitant chemotherapy and radiation therapy for cancer of the uterine cervix. Cochrane Database Syst Rev: CD002225

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alpana Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A., Rajappa, M., Satyam, A. et al. Oxidant/anti-oxidant dynamics in patients with advanced cervical cancer: correlation with treatment response. Mol Cell Biochem 341, 65–72 (2010). https://doi.org/10.1007/s11010-010-0437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0437-2

Keywords

Navigation