Skip to main content

Interplay Between Redox Homeostasis and Oxidative Stress in the Perspective of Ovarian and Cervical Cancer Immunopathogenesis

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Generation of reactive oxygen species (ROS) is an inevitable part of cellular metabolism that is controlled by the antioxidant defense mechanism to maintain redox homeostasis. Under external or internal stress, this redox balance gets perturbed leading to high ROS levels and thus oxidative stress. Persistent oxidative stress contributes to the neoplastic transformation of healthy tissues. Oxidative stress is a crucial factor in the process of carcinogenesis as it aids in the initiation, promotion, and progression of tumor cells. ROS stimulates the growth of cancer cells by regulating various signaling pathways and suppressing antitumor immune responses. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) present in the tumor inflammatory microenvironment utilize ROS to inactivate antitumor T-cell activity. Ovarian and cervical cancer are the most lethal gynecological cancers that are associated with inflammation related to oxidative stress. The standard medications for ovarian and cervical cancer treatment are surpassed by the tumor cells leading to more aggressive cancer phenotypes. The modulation of ROS levels by the action of chemotherapeutics along with immunotherapy is a potential strategy to cure cancer patients. The use of T-cell based therapy is a well-known approach for treatment of cancer. However, the efficacy of treatment is hampered by the functional inactivation of T cells when these cells enter into highly oxidative tumor microenvironment. Thus, to increase the efficacy of T-cell based therapy, the use of antioxidants to decrease the ROS levels, can prove to be a potential strategy to treat cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre J et al (2007) Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res 67(8):3512–3517

    Article  CAS  PubMed  Google Scholar 

  • Amer K, Oliver D (2012) MMPs in ovarian cancer as therapeutic targets. Anti Cancer Agents Med Chem 12(7):764–772

    Article  Google Scholar 

  • Androutsopoulos VP et al (2013) Expression profile of CYP1A1 and CYP1B1 enzymes in colon and bladder tumors. PLoS One 8(12):e82487

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckman JS et al (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87(4):1620–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  • Byun DJ et al (2017) Cancer immunotherapy – immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol 13(4):195–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan DW et al (2008) Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 29(9):1742–1750

    Article  CAS  PubMed  Google Scholar 

  • Chandel NS et al (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275(33):25130–25138

    Article  CAS  PubMed  Google Scholar 

  • Chen Wongworawat Y et al (2016) Chronic oxidative stress increases the integration frequency of foreign DNA and human papillomavirus 16 in human keratinocytes. Am J Cancer Res 6(4):764–780

    PubMed  PubMed Central  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Marco F (2013) Oxidative stress and HPV carcinogenesis. Viruses 5(2):708–731

    Article  PubMed  PubMed Central  Google Scholar 

  • Filippova M et al (2014) Cellular levels of oxidative stress affect the response of cervical cancer cells to chemotherapeutic agents. Biomed Res Int 2014:574659

    Article  PubMed  PubMed Central  Google Scholar 

  • Foster R, Buckanovich RJ, Rueda BR (2013) Ovarian cancer stem cells: working towards the root of stemness. Cancer Lett 338(1):147–157

    Article  CAS  PubMed  Google Scholar 

  • Garson K, Vanderhyden BC (2015) Epithelial ovarian cancer stem cells: underlying complexity of a simple paradigm. Reproduction 149(2):R59–R70

    Article  CAS  PubMed  Google Scholar 

  • Green J et al (2003) Risk factors for adenocarcinoma and squamous cell carcinoma of the cervix in women aged 20–44 years: the UK National Case–Control Study of Cervical Cancer. Br J Cancer 89(11):2078–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habtetsion T et al (2018) Alteration of tumor metabolism by CD4+ T cells leads to TNF-α-dependent intensification of oxidative stress and tumor cell death. Cell Metab 28(2):228–242.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakim AA et al (2009) Ovarian adenocarcinomas in the laying hen and women share similar alterations in p53, ras, and HER-2/neu. Cancer Prev Res (Phila) 2(2):114–121

    Article  CAS  Google Scholar 

  • Hou D et al (2018) Increased oxidative stress mediates the antitumor effect of PARP inhibition in ovarian cancer. Redox Biol 17:99–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Ott PA, Wu CJ (2018) Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol 18(3):168–182

    Article  CAS  PubMed  Google Scholar 

  • Jiang J et al (2017) Redox regulation in tumor cell epithelial–mesenchymal transition: molecular basis and therapeutic strategy. Signal Transduct Target Ther 2(1):17036

    Article  PubMed  PubMed Central  Google Scholar 

  • Joanna K, Hassan YA-E (2017) Reactive oxygen and nitrogen species in carcinogenesis: implications of oxidative stress on the progression and development of several cancer types. Mini-Rev Med Chem 17(11):904–919

    Google Scholar 

  • Juhasz A et al (2009) Expression of NADPH oxidase homologues and accessory genes in human cancer cell lines, tumours and adjacent normal tissues. Free Radic Res 43(6):523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstantinopoulos PA et al (2011) Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer. Cancer Res 71(15):5081–5089

    Article  CAS  PubMed  Google Scholar 

  • Kraaij MD et al (2010) Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc Natl Acad Sci 107(41):17686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ligtenberg MA et al (2016) Coexpressed catalase protects chimeric antigen receptor–redirected T cells as well as bystander cells from oxidative stress–induced loss of antitumor activity. J Immunol 196(2):759

    Article  CAS  PubMed  Google Scholar 

  • Luanpitpong S et al (2012) Mitochondrial superoxide mediates doxorubicin-induced keratinocyte apoptosis through oxidative modification of ERK and Bcl-2 ubiquitination. Biochem Pharmacol 83(12):1643–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JQ et al (2015) Functional role of NRF2 in cervical carcinogenesis. PLoS One 10(8):e0133876

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez VD et al (2014) Unique pattern of component gene disruption in the NRF2 inhibitor KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex in serous ovarian cancer. Biomed Res Int 2014:159459

    Article  PubMed  PubMed Central  Google Scholar 

  • Meitzler JL et al (2017) Decoding NADPH oxidase 4 expression in human tumors. Redox Biol 13:182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molon B et al (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208(10):1949–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaraj S et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13(7):828–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panis C et al (2012) Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat 133(1):89–97

    Article  CAS  PubMed  Google Scholar 

  • Pons DG et al (2012) Initial activation status of the antioxidant response determines sensitivity to carboplatin/paclitaxel treatment of ovarian cancer. Anticancer Res 32(11):4723–4728

    CAS  PubMed  Google Scholar 

  • Prat J (2012) Ovarian carcinomas: five distinct diseases with different origins, genetic alterations, and clinicopathological features. Virchows Arch 460(3):237–249

    Article  PubMed  Google Scholar 

  • Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 122(2):168–181

    Article  PubMed  Google Scholar 

  • Ray Chaudhuri A, Nussenzweig A (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18(10):610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saed GM, Diamond MP, Fletcher NM (2017) Updates of the role of oxidative stress in the pathogenesis of ovarian cancer. Gynecol Oncol 145(3):595–602

    Article  CAS  PubMed  Google Scholar 

  • Sallmyr A, Fan J, Rassool FV (2008) Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett 270(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Schieber M, Navdeep S (2014) Chandel, ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmielau J, Nalesnik MA, Finn OJ (2001) Suppressed T-cell receptor zeta chain expression and cytokine production in pancreatic cancer patients. Clin Cancer Res 7(3 Suppl):933s–939s

    CAS  PubMed  Google Scholar 

  • Soraya S, Mozafar K (2018) Oxidative stress and cancer: the role of Nrf2. Curr Cancer Drug Targets 18(6):538–557

    Article  Google Scholar 

  • Sun C et al (2019) A reactive oxygen species scoring system predicts cisplatin sensitivity and prognosis in ovarian cancer patients. BMC Cancer 19(1):1061

    Article  PubMed  PubMed Central  Google Scholar 

  • Svineng G et al (2008) The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect Tissue Res 49(3–4):197–202

    Article  CAS  PubMed  Google Scholar 

  • Tafani M et al (2016) The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression. Oxidative Med Cell Longev 2016:3907147

    Article  Google Scholar 

  • Thorn CF et al (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 21(7):440–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    Article  CAS  PubMed  Google Scholar 

  • Ugel S et al (2015) Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest 125(9):3365–3376

    Article  PubMed  PubMed Central  Google Scholar 

  • Urszula L, Krzysztof K (2016) Mechanisms of tumour escape from immune surveillance. J Vet Res 60(4):453–460

    Article  Google Scholar 

  • Vercellini P et al (2011) The ‘incessant menstruation’ hypothesis: a mechanistic ovarian cancer model with implications for prevention. Hum Reprod 26(9):2262–2273

    Article  PubMed  Google Scholar 

  • Wang Y et al (2014) Reactive oxygen species promote ovarian cancer progression via the HIF-1α/LOX/E-cadherin pathway. Oncol Rep 32(5):2150–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver BA (2014) How taxol/paclitaxel kills cancer cells. Mol Biol Cell 25(18):2677–2681

    Article  PubMed  PubMed Central  Google Scholar 

  • White M et al (2014) Chapter 5 – the role of oxidative stress in ovarian cancer: implications for the treatment of patients. In: Preedy V (ed) Cancer. Academic Press, San Diego, pp 41–50

    Chapter  Google Scholar 

  • Williams VM et al (2010) HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Futur Virol 6(1):45–57

    Article  Google Scholar 

  • Xia C et al (2007) Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 67(22):10823

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2013) ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 23(7):898–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z et al (2015) CYP1B1 enhances the resistance of epithelial ovarian cancer cells to paclitaxel in vivo and in vitro. Int J Mol Med 35(2):340–348

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayasri Das Sarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, S., Mulchandani, V., Banerjee, A., Das Sarma, J. (2022). Interplay Between Redox Homeostasis and Oxidative Stress in the Perspective of Ovarian and Cervical Cancer Immunopathogenesis. In: Chakraborti, S., Ray, B.K., Roychoudhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-9411-3_69

Download citation

Publish with us

Policies and ethics