Skip to main content

Advertisement

Log in

Activation of RhoA and FAK induces ERK-mediated osteopontin expression in mechanical force-subjected periodontal ligament fibroblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The precise mechanism by which Rho kinase translates the mechanical signals into OPN up-regulation in force-exposed fibroblasts has not been elucidated. Human periodontal ligament fibroblasts (hPLFs) were exposed to mechanical force by centrifuging the culture plates at a magnitude of 50 g/cm2 for 60 min. At various times of the force application, they were processed for analyzing cell viability, trypan blue exclusion, and OPN expression at protein and RNA levels. Cellular mechanism(s) of the force-induced OPN up-regulation was also examined using various kinase inhibitors or antisense oligonucleotides specific to mechanosensitive factors. Centrifugal force up-regulated OPN expression and induced a rapid and transient increase in the phosphorylation of focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and Elk1. Pharmacological blockade of RhoA/Rho-associated coiled coil-containing kinase (ROCK) signaling markedly reduced force-induced FAK and ERK1/2 phosphorylation. Transfecting hPLFs with FAK antisense oligonucleotide diminished ERK1/2 activation and force-induced OPN expression. Further, ERK inhibitor inhibited significantly OPN expression, Elk1 phosphorylation, and activator protein-1 (AP-1)-DNA binding activation, but not FAK phosphorylation, in the force-applied cells. These results demonstrate that FAK signaling plays critical roles in force-induced OPN expression in hPLFs through interaction with Rho/ROCK as upstream effectors and ERK-Elk1/ERK-c-Fos as downstream effectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sodek J, Limeback HF (1979) Comparison of the rates of synthesis, conversion and maturation of type I and type III collagens in rat periodontal tissues. J Biol Chem 254:10496–10502

    CAS  PubMed  Google Scholar 

  2. Berkovitz BKB (1990) The structure of the periodontal ligament: an update. Eur J Orthod 12:51–76

    CAS  PubMed  Google Scholar 

  3. Lekic P, McCulloch CA (1996) Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. Anat Rec 245:327–341

    Article  CAS  PubMed  Google Scholar 

  4. Kanzaki H, Chiba M, Shimizu Y, Mitani H (2001) Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res 80:887–891

    Article  CAS  PubMed  Google Scholar 

  5. Kanzaki H, Chiba M, Shimizu Y, Mitani H (2002) Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 17:210–220

    Article  CAS  PubMed  Google Scholar 

  6. Wada N, Maeda H, Yoshimine Y, Akamine A (2004) Lipopolysaccharide stimulates expression of osteoprotegerin and receptor activator of NF-kappaB ligand in periodontal ligament fibroblasts through the induction of interleukin-1beta and tumor necrosis factor-alpha. Bone 35:629–635

    Article  CAS  PubMed  Google Scholar 

  7. Gotoh Y, Salih E, Glimcher MJ, Gerstenfeld LC (1995) Characterization of the major non-collagenous proteins of chicken bone: identification of a novel 60 kDa non-collagenous phosphoprotein. Biochem Biophys Res Commun 208:863–870

    Article  CAS  PubMed  Google Scholar 

  8. Weinreb M, Shinar D, Rodan GA (1990) Different pattern of alkaline phosphatase, osteopontin, and osteocalcin expression in developing rat bone visualized by in situ hybridization. J Bone Miner Res 5:831–842

    CAS  PubMed  Google Scholar 

  9. Merry K, Dodds R, Littlewood A, Gowen M (1993) Expression of osteopontin mRNA by osteoclasts and osteoblasts in modelling adult human bone. J Cell Sci 104(Pt 4):1013–1020

    CAS  PubMed  Google Scholar 

  10. Terai K, Takano-Yamamoto T, Ohba Y, Hiura K, Sugimoto M, Sato M, Kawahata H, Inaguma N, Kitamura Y, Nomura S (1999) Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res 14:839–849

    Article  CAS  PubMed  Google Scholar 

  11. Morinobu M, Ishijima M, Rittling SR, Tsuji K, Yamamoto H, Nifuji A, Denhardt DT, Noda M (2003) Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. J Bone Miner Res 18:1706–1715

    Article  CAS  PubMed  Google Scholar 

  12. Jeon YM, Kook SH, Son YO, Kim EM, Park SS, Kim JG, Lee JC (2009) Role of MAPK in mechanical force-induced up-regulation of type I collagen and osteopontin in human gingival fibroblasts. Mol Cell Biochem 320:45–52

    Article  CAS  PubMed  Google Scholar 

  13. Giachelli CM, Steitz S (2000) Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol 19:615–622

    Article  CAS  PubMed  Google Scholar 

  14. Standal T, Borset M, Sundan A (2004) Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol 26:179–184

    CAS  PubMed  Google Scholar 

  15. Lao M, Marino V, Bartold PM (2006) Immunohistochemical study of bone sialoprotein and osteopontin in healthy and diseased root surfaces. J Periodontol 77:1665–1673

    Article  PubMed  Google Scholar 

  16. Lee A, Schneider G, Finkelstein M, Southard T (2004) Root resorption: the possible role of extracellular matrix proteins. Am J Orthod Dentofacial Orthop 126:173–177

    Article  PubMed  Google Scholar 

  17. Jimenez-Pellegrin C, Arana-Chavez VE (2007) Root resorption repair in mandibular first premolars after rotation. A transmission electron microscopy analysis combined with immunolabeling of osteopontin. Am J Orthod Dentofacial Orthop 132:230–236

    Article  PubMed  Google Scholar 

  18. Christgau M, Caffesse RG, Schmalz G, D’Souza RN (2007) Extracellular matrix expression and periodontal wound-healing dynamics following guided tissue regeneration therapy in canine furcation defects. J Clin Periodontol 34:691–708

    Article  CAS  PubMed  Google Scholar 

  19. Terashima Y, Shimabukuro Y, Terashima H, Ozasa M, Terakura M, Ikezawa K, Hashikawa T, Takedachi M, Oohara H, Yamada S, Murakami S (2008) Fibroblast growth factor-2 regulates expression of osteopontin in periodontal ligament cells. J Cell Physiol 216:640–650

    Article  CAS  PubMed  Google Scholar 

  20. Sharma CG, Pradeep AR (2006) Gingival crevicular fluid osteopontin levels in periodontal health and disease. J Periodontol 77:1674–1680

    Article  CAS  PubMed  Google Scholar 

  21. Sharma CG, Pradeep AR (2007) Plasma and crevicular fluid osteopontin levels in periodontal health and disease. J Periodontal Res 42:450–455

    Article  CAS  PubMed  Google Scholar 

  22. Wongkhantee S, Yongchaitrakul T, Pavasant P (2007) Mechanical stress induces osteopontin expression in human periodontal ligament cells through rho kinase. J Periodontol 78:1113–1119

    Article  PubMed  Google Scholar 

  23. Wongkhantee S, Yongchaitrakul T, Pavasant P (2008) Mechanical stress induces osteopontin via ATP/P2Y1 in periodontal cells. J Dent Res 87:564–568

    Article  CAS  PubMed  Google Scholar 

  24. Torsoni AS, Marin TM, Velloso LA, Franchini KG (2005) RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol Heart Circ Physiol 289:H1488–H1496

    Article  CAS  PubMed  Google Scholar 

  25. Lal H, Verma SK, Smith M, Guleria RS, Lu G, Foster DM, Dostal DE (2007) Stretch-induced MAP kinase activation in cardiac myocytes: differential regulation through beta1-integrin and focal adhesion kinase. J Mol Cell Cardiol 43:137–147

    Article  CAS  PubMed  Google Scholar 

  26. Albinsson S, Hellstrand P (2007) Integration of signal pathways for stretch-dependent growth and differentiation in vascular smooth muscle. Am J Physiol Cell Physiol 293:C772–C782

    Article  CAS  PubMed  Google Scholar 

  27. Chaturvedi LS, Marsh HM, Basson MD (2007) Src and focal adhesion kinase mediate mechanical strain-induced proliferation and ERK1/2 phosphorylation in human H441 pulmonary epithelial cells. Am J Physiol Cell Physiol 292:C1701–C1713

    Article  CAS  PubMed  Google Scholar 

  28. Takeda H, Matozaki T, Fujioka Y, Takada T, Noguchi T, Yamao T, Tsuda M, Ochi F, Fukunaga K, Narumiya S, Yamamoto T, Kasuga M (1998) Lysophosphatidic acid-induced association of SHP-2 with SHPS-1: roles of RHO, FAK, and a SRC family kinase. Oncogene 16:3019–3027

    Article  CAS  PubMed  Google Scholar 

  29. Pirone DM, Liu WF, Ruiz SA, Gao L, Raghavan S, Lemmon CA, Romer LH, Chen CS (2006) An inhibitory role for FAK in regulating proliferation: a link between limited adhesion and RhoA-ROCK signaling. J Cell Biol 174:277–288

    Article  CAS  PubMed  Google Scholar 

  30. Zhang SJ, Truskey GA, Kraus WE (2007) Effect of cyclic stretch on beta1D-integrin expression and activation of FAK and RhoA. Am J Physiol Cell Physiol 292:C2057–C2069

    Article  CAS  PubMed  Google Scholar 

  31. Howard PS, Kucich U, Taliwal R, Korostoff JM (1998) Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J Periodontal Res 33:500–508

    Article  CAS  PubMed  Google Scholar 

  32. Redlich M, Palmon A, Zaks B, Geremi E, Rayzman S, Shoshan S (1998) The effect of centrifugal force on the transcription levels of collagen type I and collagenase in cultured canine gingival fibroblasts. Arch Oral Biol 43:313–316

    Article  CAS  PubMed  Google Scholar 

  33. Redlich M, Roos H, Reichenberg E, Zaks B, Grosskop A, Bar Kana I, Pitaru S, Palmon A (2004) The effect of centrifugal force on mRNA levels of collagenase, collagen type-I, tissue inhibitors of metalloproteinases and β-actin in cultured human periodontal ligament fibroblasts. J Periodontal Res 39:27–32

    Article  CAS  PubMed  Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  35. Maulik N, Sato M, Price BD, Das DK (1998) An essential role of NF-kappaB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia. FEBS Lett 429:365–369

    Article  CAS  PubMed  Google Scholar 

  36. Liedert A, Kaspar D, Blakytny R, Claes L, Ignatius A (2006) Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophys Res Commun 349:1–5

    Article  CAS  PubMed  Google Scholar 

  37. Kook SH, Hwang JM, Park JS, Kim EM, Heo JS, Jeon YM, Lee JC (2009) Mechanical force induces type I collagen expression in human periodontal ligament fibroblasts through activation of ERK/JNK and AP-1. J Cell Biochem 106:1060–1067

    Article  CAS  PubMed  Google Scholar 

  38. Wu CC, Li YS, Haga JH, Wang N, Lian IYZ, Su FC, Usami S, Chien S (2006) Roles of MAP kinases in the regulation of bone matrix gene expressions in human osteoblasts by oscillatory fluid flow. J Cell Biochem 98:632–641

    Article  CAS  PubMed  Google Scholar 

  39. Franceschi RT, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E (2003) Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res 44(suppl 1):109–116

    CAS  PubMed  Google Scholar 

  40. Xu C, Shen G, Yuan X, Kim JH, Gopalkrishnan A, Keum YS, Nair S, Kong AN (2006) ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells. Carcinogenesis 27:437–445

    Article  PubMed  CAS  Google Scholar 

  41. Katsumi A, Orr AW, Tzima E, Schwartz MA (2004) Integrins in mechanotransduction. J Biol Chem 279:12001–12004

    Article  CAS  PubMed  Google Scholar 

  42. Schwartz MA, DeSimone DW (2008) Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 20:551–556

    Article  CAS  PubMed  Google Scholar 

  43. Cho KA, Ryu SJ, Oh YS, Park JH, Lee JW, Kim HP, Kim KT, Jang IS, Park SC (2004) Morphological adjustment of senescent cells by modulating caveolin-1 status. J Biol Chem 279:42270–42278

    Article  CAS  PubMed  Google Scholar 

  44. Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275:1308–1311

    Article  CAS  PubMed  Google Scholar 

  45. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Zhu W, Kadowaki T, Yazaki Y (1999) Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes. Circ Res 84:458–466

    CAS  PubMed  Google Scholar 

  46. Makino A, Glogauer M, Bokoch GM, Chien S, Schmid-Schönbein GW (2005) Control of neutrophil pseudopods by fluid shear: role of Rho family GTPases. Am J Physiol Cell Physiol 288:C863–C871

    Article  CAS  PubMed  Google Scholar 

  47. Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4:446–456

    Article  CAS  PubMed  Google Scholar 

  48. Yamashiro K, Myokai F, Hiratsuka K, Yamamoto T, Senoo K, Arai H, Nishimura F, Abiko Y, Takashiba S (2007) Oligonucleotide array analysis of cyclic tension-responsive genes in human periodontal ligament fibroblasts. Int J Biochem Cell Biol 39:910–921

    Article  CAS  PubMed  Google Scholar 

  49. Chellaiah MA, Biswas RS, Rittling SR, Denhardt DT, Hruska KA (2003) Rho-dependent Rho kinase activation increases CD44 surface expression and bone resorption in osteoclasts. J Biol Chem 278:29086–29097

    Article  CAS  PubMed  Google Scholar 

  50. Li JJ, Han M, Wen JK, Li AY (2007) Osteopontin stimulates vascular smooth muscle cell migration by inducing FAK phosphorylation and ILK dephosphorylation. Biochem Biophys Res Commun 356:13–19

    Article  CAS  PubMed  Google Scholar 

  51. Han M, Wen JK, Zheng B, Liu Z, Chen Y (2007) Blockade of integrin beta3-FAK signaling pathway activated by osteopontin inhibits neointimal formation after balloon injury. Cardiovasc Pathol 16:283–290

    Article  CAS  PubMed  Google Scholar 

  52. Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589–607

    Article  CAS  PubMed  Google Scholar 

  53. Li C, Hu Y, Mayr M, Xu Q (1999) Cyclic strain stress-induced mitogen-activated protein kinase (MAPK) phosphatase 1 expression in vascular smooth muscle cells is regulated by Ras/Rac-MAPK pathways. J Biol Chem 274:25273–25280

    Article  CAS  PubMed  Google Scholar 

  54. Basdra ER, Papavassiliou AG, Huber LA (1995) Rab and rho GTPases are involved in specific response of periodontal ligament fibroblasts to mechanical stretching. Biochim Biophys Acta 1268:209–213

    Article  PubMed  Google Scholar 

  55. Hall A (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33(Pt 5):891–895

    CAS  PubMed  Google Scholar 

  56. Davis RJ (2000) The JNK signal transduction pathway. Cell 103:239–252

    Article  CAS  PubMed  Google Scholar 

  57. Peake MA, Cooling LM, Magnay JL, Thomas PB, El Haj AJ (2000) Selected contribution: regulatory pathways involved in mechanical induction of c-fos gene expression in bone cells. J Appl Physiol 89:2498–2507

    CAS  PubMed  Google Scholar 

  58. Cruzalegui FH, Cano E, Treisman R (1999) ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry. Oncogene 18:7948–7957

    Article  CAS  PubMed  Google Scholar 

  59. El-Tanani M, Platt-Higgins A, Rudland PS, Campbell FC (2004) Ets gene PEA3 cooperates with beta-catenin-Lef-1 and c-Jun in regulation of osteopontin transcription. J Biol Chem 279:20794–20806

    Article  CAS  PubMed  Google Scholar 

  60. Denhardt DT, Mistretta D, Chambers AF, Krishna S, Porter JF, Raghuram S, Rittling SR (2003) Transcriptional regulation of osteopontin and the metastatic phenotype: evidence for a Ras-activated enhancer in the human OPN promoter. Clin Exp Metastasis 20:77–84

    Article  CAS  PubMed  Google Scholar 

  61. Yoshioka K, Deng T, Cavigelli M, Karin M (1995) Antitumor promotion by phenolic antioxidants: inhibition of AP-1 activity though induction of Fra expression. Proc Natl Acad Sci USA 92:4972–4976

    Article  CAS  PubMed  Google Scholar 

  62. Kletsas D, Basdra E, Papavassiliou AG (2002) Effect of protein kinase inhibitors on the stretch-elicited c-Fos and c-Jun up-regulation in human PDL osteoblast-like cells. J Cell Physiol 190:313–321

    Article  CAS  PubMed  Google Scholar 

  63. Li J, Chen G, Zheng L, Luo S, Zhao Z (2007) Osteoblast cytoskeletal modulation in response to compressive stress at physiological levels. Mol Cell Biochem 304:45–52

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A084283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Chae Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, SY., Jeon, YM., Lee, HJ. et al. Activation of RhoA and FAK induces ERK-mediated osteopontin expression in mechanical force-subjected periodontal ligament fibroblasts. Mol Cell Biochem 335, 263–272 (2010). https://doi.org/10.1007/s11010-009-0276-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0276-1

Keywords

Navigation