Skip to main content
Log in

Keratinocyte-releasable factors increased the expression of MMP1 and MMP3 in co-cultured fibroblasts under both 2D and 3D culture conditions

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) are key elements in extracellular matrix (ECM) degradation and scar remodeling during the wound-healing process. Our previous data revealed that keratinocyte-releasable factors significantly increased the expression of fibroblast MMPs in monolayer-cultured fibroblasts. In this study, we analyzed the differences in the MMP expressions of fibroblasts in a three-dimensional fibroblast-populated collagen gel (3D FPCG) from that in a two-dimensional monolayer-cultured fibroblasts when both co-cultured with keratinocytes. Differential mRNA and protein expression of fibroblasts were examined by microarray, RT-PCR, and western blot. Our results showed that fibroblasts co-cultured with keratinocytes in a 3D FPCG expressed significantly higher MMP1 and MMP3 at the gene and protein levels. Due to the physiological advantages of a 3D FPCG model to a 2D system, we concluded that the 3D FPCG model may provide a better means of understanding the fibroblast–keratinocyte cross-talk during the wound-healing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ghaffari A, Li Y, Karami A, Ghaffari M, Tredget EE, Ghahary A (2006) Fibroblast extracellular matrix gene expression in response to keratinocyte releasable stratifin. J Cell Biochem 98:383–393. doi:10.1002/jcb.20782

    Article  CAS  PubMed  Google Scholar 

  2. Ghahary A, Marcoux Y, Karimi-Busheri F et al (2005) Differentiated keratinocyte-releasable stratifin (14-3-3 sigma) stimulates MMP-1 expression in dermal fibroblasts. J Invest Dermatol 124:ix–x. doi:10.1111/j.0022-202X.2004.23521.x

    Article  Google Scholar 

  3. Deitch EA, Wheelahan TM, Rose MP, Clothier J, Cotter J (1983) Hypertrophic burn scars: analysis of variables. J Trauma 23:895–898

    Article  CAS  PubMed  Google Scholar 

  4. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494. doi:10.1074/jbc.274.31.21491

    Article  CAS  PubMed  Google Scholar 

  5. Ghahary A, Shen YJ, Nedelec B, Wang R, Scott PG, Tredget EE (1996) Collagenase production is lower in post-burn hypertrophic scar fibroblasts than in normal fibroblasts and is reduced by insulin-like growth factor-1. J Invest Dermatol 106:476–481. doi:10.1111/1523-1747.ep12343658

    Article  CAS  PubMed  Google Scholar 

  6. Birkedal-Hansen H, Moore WG, Bodden MK et al (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4:197–250

    CAS  PubMed  Google Scholar 

  7. Carlson MA, Longaker MT (2004) The fibroblast-populated collagen matrix as a model of wound healing: a review of the evidence. Wound Repair Regen 12:134–147. doi:10.1111/j.1067-1927.2004.012208.x

    Article  PubMed  Google Scholar 

  8. Ghahary A, Karimi-Busheri F, Marcoux Y et al (2004) Keratinocyte-releasable stratifin functions as a potent collagenase-stimulating factor in fibroblasts. J Invest Dermatol 122:1188–1197. doi:10.1111/j.0022-202X.2004.22519.x

    Article  CAS  PubMed  Google Scholar 

  9. Carlson MA, Thompson JS (2004) Wound splinting modulates granulation tissue proliferation. Matrix Biol 23:243–250. doi:10.1016/j.matbio.2004.05.006

    Article  CAS  PubMed  Google Scholar 

  10. Cukierman E, Pankov R, Yamada KM (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14:633–639. doi:10.1016/S0955-0674(02)00364-2

    Article  CAS  PubMed  Google Scholar 

  11. Ehrlich HP, Krummel TM (1996) Regulation of wound healing from a connective tissue perspective. Wound Repair Regen 4:203–210. doi:10.1046/j.1524-475X.1996.40206.x

    Article  CAS  PubMed  Google Scholar 

  12. Grinnell F (1994) Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 124:401–404. doi:10.1083/jcb.124.4.401

    Article  CAS  PubMed  Google Scholar 

  13. Tuan TL, Song A, Chang S, Younai S, Nimni ME (1996) In vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. Exp Cell Res 223:127–134. doi:10.1006/excr.1996.0065

    Article  CAS  PubMed  Google Scholar 

  14. Miller BE, Miller FR, Heppner GH (1985) Factors affecting growth and drug sensitivity of mouse mammary tumor lines in collagen gel cultures. Cancer Res 45:4200–4205

    CAS  PubMed  Google Scholar 

  15. Torisawa YS, Shiku H, Kasai S, Nishizawa M, Matsue T (2004) Proliferation assay on a silicon chip applicable for tumors extirpated from mammalians. Int J Cancer 109:302–308. doi:10.1002/ijc.11693

    Article  CAS  PubMed  Google Scholar 

  16. Scott PG, Ghahary A, Tredget EE (2000) Molecular and cellular aspects of fibrosis following thermal injury. Hand Clin 16:271–287

    CAS  PubMed  Google Scholar 

  17. Tredget EE, Nedelec B, Scott PG, Ghahary A (1997) Hypertrophic scars, keloids, and contractures. The cellular and molecular basis for therapy. Surg Clin North Am 77:701–730. doi:10.1016/S0039-6109(05)70576-4

    Article  CAS  PubMed  Google Scholar 

  18. Medina A, Ghaffari A, Kilani RT, Ghahary A (2007) The role of stratifin in fibroblast–keratinocyte interaction. Mol Cell Biochem 305:255–264. doi:10.1007/s11010-007-9538-y

    Article  CAS  PubMed  Google Scholar 

  19. Kahari VM, Saarialho-Kere U (1997) Matrix metalloproteinases in skin. Exp Dermatol 6:199–213. doi:10.1111/j.1600-0625.1997.tb00164.x

    Article  CAS  PubMed  Google Scholar 

  20. Saus J, Quinones S, Otani Y, Nagase H, Harris ED Jr, Kurkinen M (1988) The complete primary structure of human matrix metalloproteinase-3. Identity with stromelysin. J Biol Chem 263:6742–6745

    CAS  PubMed  Google Scholar 

  21. Mackay AR, Ballin M, Pelina MD et al (1992) Effect of phorbol ester and cytokines on matrix metalloproteinase and tissue inhibitor of metalloproteinase expression in tumor and normal cell lines. Invasion Metastasis 12:168–184

    CAS  PubMed  Google Scholar 

  22. Moon SE, Dame MK, Remick DR, Elder JT, Varani J (2001) Induction of matrix metalloproteinase-1 (MMP-1) during epidermal invasion of the stroma in human skin organ culture: keratinocyte stimulation of fibroblast MMP-1 production. Br J Cancer 85:1600–1605. doi:10.1054/bjoc.2001.2122

    Article  CAS  PubMed  Google Scholar 

  23. Lam E, Kilani RT, Li Y, Tredget EE, Ghahary A (2005) Stratifin-induced matrix metalloproteinase-1 in fibroblast is mediated by c-fos and p38 mitogen-activated protein kinase activation. J Invest Dermatol 125:230–238

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been supported by a grant funded by the Canadian Institute of Health Research. We thank Dr. Ruhangiz Taghi Kilani, Dr. Abdi Ghaffari, and Dr. Reza B. Jalili for excellent technique support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Ghahary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Moeen Rezakhanlou, A., Chavez-Munoz, C. et al. Keratinocyte-releasable factors increased the expression of MMP1 and MMP3 in co-cultured fibroblasts under both 2D and 3D culture conditions. Mol Cell Biochem 332, 1–8 (2009). https://doi.org/10.1007/s11010-009-0167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0167-5

Keywords

Navigation