Skip to main content
Log in

The role of stratifin in fibroblast–keratinocyte interaction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Stratifin is a member of 14-3-3 protein family, a highly conserved group of proteins constituted by seven isoforms. They are involved in numerous crucial intracellular functions such as cell cycle and apoptosis, regulation of signal transduction pathways, cellular trafficking, cell proliferation and differentiation, cell survival, and protein folding and processing, among others. At epidermal level, stratifin (also called 14-3-3 sigma) has been described as molecule with relevant functions. For instance, this isoform is a marker associated with keratinocyte differentiation. In this maturation process, the presence of dominant negative molecules of p53 induces a “stemness condition” of keratinocyte precursor cells and suppression of stratifin expression. In addition, the recently described keratinocyte-releasable form of stratifin is involved in dermal fibroblast MMP-1 over-expression through c-Fos and c-Jun activity. This effect is mediated, at least in part, by p38 mitogen-activated protein kinase (MAPK). Other MMP family members such as stromelysin-1 (MMP-3), stromelysin-2 (MMP-10), neutrophil collagenase (MMP-8), and membrane-type MMP-24 (MT5-MMP) are also up-regulated by stratifin. Within fibroproliferative disorder of skin, hypertrophic scar and keloids exhibit a high content of collagen, proteoglycans, and fibronectin. Thus, the MMP profile induced by stratifin is an interesting starting point to establish new therapeutic tools to control the process of wound healing. In this review, we will focus on site of synthesis and mode of action of stratifin in skin and wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Elk4:

ETS domain protein

ERK:

Extracellular signal-regulated kinase

ETS:

E twenty-six (Ets) domain transcription factors

KSFM:

Keratinocyte serum-free medium

MAPK:

Mitogen-activated protein kinase

MMP:

Matrix metalloproteinase

NID Box:

Net inhibitory domain of Elk4/Sap1a

Sap1a:

Serum response factor accessory protein 1

SRE:

Serum response element

SRF:

Serum response factor

TAD:

C-terminal transcriptional activation domain of Elk4/Sap1a

TCF:

Ternary complex factor

References

  1. Moore BW, Perez VJ (1967) Specific acidic proteins of the nervous system. In: Carlson FD (ed) Physiological and biochemical aspects of nervous integration. Prentice-Hall, Englewood Cliffs, NJ, pp 343–359

    Google Scholar 

  2. Ichimura T, Isobe T, Okuyama T et al (1987) Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+, calmodulin-dependent protein kinase II. FEB 219(1):79–82

    CAS  Google Scholar 

  3. Ichimura T, Isobe T, Okuyama T et al (1988) Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc Natl Acad Sci USA 85:7084–7088

    PubMed  CAS  Google Scholar 

  4. Fu H, Subramanian R, Masters S (2000) 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617–647

    PubMed  CAS  Google Scholar 

  5. Muslin A, Tanner W, Allen P et al (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84:889–897

    PubMed  CAS  Google Scholar 

  6. Aitken A (1996) 14-3-3 and its possible role in co-ordinating multiple signaling pathways. Cell Biology 6:341–347

    CAS  Google Scholar 

  7. Yaffe M, Rittinger K, Volinia S et al (1997) The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91:961–971

    PubMed  CAS  Google Scholar 

  8. Jin J, Smith D, Stark C et al (2004) Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol 14:1436–1450

    PubMed  CAS  Google Scholar 

  9. Mackintosh C (2004) Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J 381:329–342

    PubMed  CAS  Google Scholar 

  10. Yaffe M (2002) How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513:53–57

    PubMed  CAS  Google Scholar 

  11. Samuel T, Weber HO, Rauch P et al (2001) The G2/M regulator 14-3-3σ prevents apoptosis through sequestration of Bax. J Biol Chem 276(48):45201–45206

    PubMed  CAS  Google Scholar 

  12. Nomura M, Shimizu S, Sugiyama T et al (2003) 14-3-3 interacts directly with and negatively regulates pro-apoptotic bax. J Biol Chem 278(3):2058–2065

    PubMed  CAS  Google Scholar 

  13. Petosa C, Masters S, Bankston L et al (1998) 14-3-3 ζ binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem 273:16305–16310

    PubMed  CAS  Google Scholar 

  14. Benton R, Palacios I, St Johnston D (2002) Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation. Dev Cell 3:659–671

    PubMed  CAS  Google Scholar 

  15. Ferguson A, Evron E, Umbricht C et al (2000) High frequency of hypermethylation at the 14-3-3 σ locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA 97(11):6049–6054

    PubMed  CAS  Google Scholar 

  16. Iwata N, Yamamoto H, Sasaki S et al (2000) Frequent hypermethylation of CpG islands and loss of expression of the 14-3-3σ gene in human hepatocellular carcinoma. Oncogene 19:5298–5302

    PubMed  CAS  Google Scholar 

  17. Suzuki H, Itoh F, Toyota M et al (2000) Inactivation of the 14-3-3 σ gene is associated with 5’ CpG island hypermethylation in human cancers. Cancer Res 60(16):4353–4357

    PubMed  CAS  Google Scholar 

  18. Wang A, Kruhlak M, Wu J et al (2000) Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol Cell Biol 20(18):6904–6912

    PubMed  CAS  Google Scholar 

  19. Grozinger CM, Schreiber SL (2000) Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci USA 97(14):7835–7840

    PubMed  CAS  Google Scholar 

  20. Muratake T, Hayashi S, Ichikawa T et al (1996) Structural organization and chromosomal assignment of the human 14-3-3 eta chain gene (YWHAH). Genomics 36(1):63–69

    PubMed  CAS  Google Scholar 

  21. Peng C-Y, Graves P, Thoma R et al (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25 on Serine-216. Science 277:1501–1505

    PubMed  CAS  Google Scholar 

  22. Dalal S, Schweitzer C, Gan J et al (1999) Cytoplasmic localization of human cdc25 during interphase requires an intact 14-3-3 binding site. Mol Cell Biol 19(6):4465–4479

    PubMed  CAS  Google Scholar 

  23. Piwnica-Worms H (1999) Fools rush in. Nature 401:535–537

    PubMed  CAS  Google Scholar 

  24. Chan T, Hermeking H, Lengauer C et al (1999) 14-3-3 σ is required to prevent mitotic catastrophe after DNA damage. Nature 401:616–620

    PubMed  CAS  Google Scholar 

  25. Fantl WJ, Muslin AJ, Kikuchi A et al (1994) Activation of Raf-1 by 14-3-3 proteins. Nature 371:612–614

    PubMed  CAS  Google Scholar 

  26. Fu H, Xia K, Pallas DC et al (1994) Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science 266:126–129

    PubMed  CAS  Google Scholar 

  27. Fanger GR, Widmann C, Porter AC et al (1998) 14-3-3 proteins interact with specific MEK kinases. J Biol Chem 273:3476–3483

    PubMed  CAS  Google Scholar 

  28. Kosaki A, Yamada K, Suga J et al (1998) 14-3-3beta protein associates with insulin receptor substrate 1 and decreases insulin-stimulated phosphatidylinositol 3’-kinase activity in 3T3L1 adipocytes. J Biol Chem 273(2):940–944

    PubMed  CAS  Google Scholar 

  29. Bonnefoy-Berard N, Liu YC, von Willebrand M et al (1995) Inhibition of phosphstidylinositol 3-kinase activity by association with 14-3-3 proteins in T cells. Proc Natl Acad Sci USA 92(22):10142–10146

    PubMed  CAS  Google Scholar 

  30. Zha J, Haraa H, Yang E et al (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87(4):619–628

    PubMed  CAS  Google Scholar 

  31. Tan Y, Demeter M, Ruan H et al (2000) BAD ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival. J Biol Chem 275(33):25865–25869

    PubMed  CAS  Google Scholar 

  32. Masters S, Yang H, Datta S et al (2001) 14-3-3 inhibits bad-induced cell death through interaction with serine-136. Mol Pharmacol 60(6):1325–1331

    PubMed  CAS  Google Scholar 

  33. Tsuruta F, Sunayama J, Mori Y et al (2004) JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 23(8):1889–1899

    PubMed  CAS  Google Scholar 

  34. Zhang L, Chen J, Fu H (1999) Supression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc Natl Acad Sci USA 96(15):8511–8515

    PubMed  CAS  Google Scholar 

  35. Masters S, Subramanian R, Truong A et al (2002) Survival-promoting functions of 14-3-3 proteins. Biochem Soc Trans 30(4):360–365

    PubMed  CAS  Google Scholar 

  36. Beguin P, Mahalakshmi RN, Nagashima K et al (2005) 14-3-3 and calmodulin control Subcellular distribution of Kir/Gem and its regulation of cell shape and calcium channel activity. J Cell Sci 118:1923–1934

    PubMed  CAS  Google Scholar 

  37. Liao J, Omary B (1996) 14-3-3 proteins associate with phosphorylated simple epithelial keratins during cell cycle progression and act as a solubility cofactor. J Cell Biol 133(2):345–357

    PubMed  CAS  Google Scholar 

  38. Ku N-O, Michie S, Resurreccion E et al (2002) Keratin binding to 14-3-3 protein modulates keratin filaments and hepatocyte mitotic progression. Proc Natl Acad Sci USA 99(7):4373–4378

    PubMed  CAS  Google Scholar 

  39. Roth D, Birkenfeld J, Betz H (1999) Dominant-negative alleles of 14-3-3 proteins cause defects in actin organization and vesicle targeting in the yeast Saccharomyces cerevisiae. FEBS Lett 460(3):411–416

    PubMed  CAS  Google Scholar 

  40. Morgan A, Burgoyne RD (1992) Exo1 and Exo2 proteins stimulate calcium-dependent Exocytosis in permeabilized adrenal chromaffin cells. Nature 355(27):833–836

    PubMed  CAS  Google Scholar 

  41. Dellambra E, Golisano O, Bondanza S et al (2000) Downregulation of 14-3-3σ prevents clonal evolution and leads to immortalization of primary human keratinocytes. J Cell Biol 149(5):1117–1129

    PubMed  CAS  Google Scholar 

  42. Tzivion G, Luo Z, Avruch J (1998) A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature 394:88–92

    PubMed  CAS  Google Scholar 

  43. Avruch J, Khokhlatchev A, Kyriakis J et al (2001) Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56:127–155

    PubMed  CAS  Google Scholar 

  44. Kaneko K, Hachiya NS (2006) The alternative role of 14-3-3 zeta as a sweeper of misfolded proteins in disease conditions. Med Hypotheses 67(1):169–171

    PubMed  CAS  Google Scholar 

  45. Urano T, Saito T, Tsukui T et al (2002) Efp targets 14-3-3σ for proteolysis and promotes breast tumour growth. Nature 417:871–875

    PubMed  CAS  Google Scholar 

  46. Nakayama H, Sano T, Motegi A et al (2005) Increasing 14-3-3 sigma expression with declining estrogen receptor α and estrogen-responsive finger protein expression defines malignant progression of endometrial carcinoma. Pathol Int 55(11):707–715

    PubMed  CAS  Google Scholar 

  47. Sato S, Chiba T, Sakata E et al (2006) 14-3-3 eta is a novel regulator of parkin ubiquitin ligase. EMBO J 25(1):211–221

    PubMed  CAS  Google Scholar 

  48. Laronga C, Yang H-Y, Neal C et al (2000) Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression. J Biol Chem 275(30):23106–23112

    PubMed  CAS  Google Scholar 

  49. Stavridi E, Chehab N, Malikzay A et al (2001) Substitutions that compromise the ionizing radiation-induced association of p53 with 14-3-3 proteins also compromise the ability of p53 to induce cell cycle arrest. Cancer Res 61:7030–7033

    PubMed  CAS  Google Scholar 

  50. Hermeking H (2003) The 14-3-3 cancer connection. Nat Rev Cancer 3:931–943

    PubMed  CAS  Google Scholar 

  51. Moreira J, Gromov P, Celis J (2004) Expression of the tumor suppressor protein 14-3-3σ is down-regulated in invasive transitional cell carcinomas of the urinary bladder undergoing epithelial-to-mesenchymal transition. Mol Cell Proteomics 3(4):410–419

    PubMed  CAS  Google Scholar 

  52. Wang W, Shakes D (1997) Expression patterns and transcript processing of ftt-1 and ftt-2, two C. elegans 14-3-3 homologues. J Mol Biol 268:619–630

    PubMed  CAS  Google Scholar 

  53. Morton D, Shakes D, Nugent S et al (2002) The Caenorhabditis elegans par-5 gene encodes a 14-3-3 protein requires for asymmetry in the early embryo. Dev Biol 241:47–58

    PubMed  CAS  Google Scholar 

  54. Benton R, St Johnston D (2003) Drosophila PAR-1 and 14-3-3 inhibit Bazzoka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115:691–704

    PubMed  CAS  Google Scholar 

  55. Freed E, Symons M, Macdonald SG et al (1994) Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science 265:1713–1716

    PubMed  CAS  Google Scholar 

  56. Powell DW, Rane MJ, Chen Q et al (2002) Identification of 14-3-3zeta as a protein kinase B? Akt substrate. J Biol Chem 277:21639–21642

    PubMed  CAS  Google Scholar 

  57. Sunayama J, Tsuruta F, Masuyama N et al (2005) JNK antagonizes Akt-mediated survival signals by phophorylating 14-3-3. J Cell Biol 170(2):295–304

    PubMed  CAS  Google Scholar 

  58. Furlanetto R, Dey B, Lopaczynski W et al (1997) 14-3-3 proteins interact with the insulin-like growth factor receptor but not the insulin receptor. Biochem J 327:765–771

    PubMed  CAS  Google Scholar 

  59. Peruzzi F, Prisco M, Dews M et al (1999) Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Mol Cell Biol 19(10):7203–7215

    PubMed  CAS  Google Scholar 

  60. Craparo A, Freund R, Gustafson T (1997) 14-3-3 (ε) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner. J Biol Chem 272(17):11663–11669

    PubMed  CAS  Google Scholar 

  61. Parvaresch S, Yesilkaya T, Baer K et al (2002) 14-3-3 binding to the IGF-1 receptor is mediated by serine autophosphorylation. FEBS Lett 532:357–362

    PubMed  CAS  Google Scholar 

  62. Wakui H, Wright AP, Gustafsson J et al (1997) Interaction of the ligand-activated glucocorticoid receptor with the 14-3-3 eta protein. J Biol Chem 272(13):8153–8156

    PubMed  CAS  Google Scholar 

  63. Tzivion G, Luo Z-J, Avruch J (2000) Calyculin A-induced Vimentin phosphorylation sequesters 14-3-3 and displaces other 14-3-3 partners in vivo. J Biol Chem 275(38):29772–29778

    PubMed  CAS  Google Scholar 

  64. Hermeking H, Lengauer C, Polyak K et al (1997) 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1:3–11

    PubMed  CAS  Google Scholar 

  65. Conklin DS, Galaktionov K, Beach D (1995) 14-3-3 proteins associate with cdc25 phosphatases. Proc Natl Acad Sci USA 92:7892–7896

    PubMed  CAS  Google Scholar 

  66. Fujita N, Sato S, Katayama K et al (2002) Akt-dependent phosphorylation of p27Kip1promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem 277(32):28706–28713

    PubMed  CAS  Google Scholar 

  67. Honda R, Ohba Y, Yasuda H (1997) 14-3-3ζ protein binds to the carboxyl half of mouse wee1 kinase. Biochem Biophys Res Commun 230:262–265

    PubMed  CAS  Google Scholar 

  68. Lee J, Kumagai A, Dunphy WG (2001) Positive regulation of wee1 by chk1 and 14-3-3 proteins. Mol Biol Cell 12:551–563

    PubMed  CAS  Google Scholar 

  69. Wang Y, Jacobs C, Hook KE et al (2000) Binding of 14-3-3β to the carboxyl terminus of wee1 increases wee1 stability, kinase activity, and G2-M cell population. Cell Growth Differ 11:211–219

    PubMed  CAS  Google Scholar 

  70. Yang A, McKeon F (2000) P63 and P73: P53 mimics, menaces and more. Nat Rev Mol Cell Biol 1(3):199–207

    PubMed  CAS  Google Scholar 

  71. Yang A, Kaghad M, Caput D et al (2002) On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18(2):90–95

    PubMed  Google Scholar 

  72. Westfall M, Mays D, Sniezek J et al (2003) The ΔNp63α phosphoprotein binds the p21 and 14-3-3σ promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells Syndrome-derived mutations. Mol Cell Biol 23(7):2264–2276

    PubMed  CAS  Google Scholar 

  73. Pellegrini G, Dellambra E, Golisano O et al (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA 98(6):3156–3161

    PubMed  CAS  Google Scholar 

  74. Yang A, Schweitzer R, Sun D et al (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398:714–718

    PubMed  CAS  Google Scholar 

  75. Mills A, Zheng B, Wang X-J et al (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398:708–713

    PubMed  CAS  Google Scholar 

  76. McGrath J, Duijf P, Doetsch V et al (2001) Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63. Hum Mol Genet 10(3):221–229

    PubMed  CAS  Google Scholar 

  77. Celli J, Duijf P, Hamel B et al (1999) Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell 99:143–153

    PubMed  CAS  Google Scholar 

  78. Satoh J-I, Kurohara K, Yukitake M et al (1999) The 14-3-3 protein detectable in the cerebrospinal fluid of patients with prion-unrelated neurological diseases is expressed constitutively in neurons and glial cells in culture. Eur Neurol 41:216–225

    PubMed  CAS  Google Scholar 

  79. Siman R, McIntosh T, Soltesz K et al (2004) Proteins released from degenerating neurons are surrogate markers for acute brain damage. Neurobiol Dis 16(2):311–320

    PubMed  CAS  Google Scholar 

  80. Leffers H, Madsen P, Rasmussen H et al (1993) Molecular cloning and expression of the transformation sensitive epithelial marker stratifin. J Mol Biol 231:982–998

    PubMed  CAS  Google Scholar 

  81. Aitken A (1995) 14-3-3 proteins on the MAP. Trends Biochem Sci 20:95–97

    PubMed  CAS  Google Scholar 

  82. Ghahary A, Karimi-Busheri F, Marcoux Y et al (2004) Keratinocyte-releasable stratifin functions as a potent collagenase-stimulating factor in fibroblasts. J Invest Dermatol 122:1188–1197

    PubMed  CAS  Google Scholar 

  83. Ghahary A, Marcoux Y, Karimi-Busheri F et al (2005) Differentiated keratinocyte-releasable stratifin (14-3-3 sigma) stimulates MMP-1 expression in dermal fibroblasts. J Invest Dermatol 124:170–177

    PubMed  CAS  Google Scholar 

  84. Lam E, Kilani R, Li Y et al (2005) Stratifin-induced matriz metalloproteinase-1 in fibroblast is mediated by c-fos and p38 mitogen-activated protein kinase activation. J Invest Dermatol 125:230–238

    PubMed  CAS  Google Scholar 

  85. Lam E, Tredget E, Marcoux Y et al (2004) Insulin suppresses collagenase stimulatory effect of stratifin in dermal fibroblasts. Mol Cell Biochem 266:167–174

    PubMed  CAS  Google Scholar 

  86. Westermarck J, Kahari V-M (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB 13:781–792

    CAS  Google Scholar 

  87. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400

    PubMed  CAS  Google Scholar 

  88. Minden A, Karin M (1997) Regulation and function of the JNK subgroup of MAP kinases. Biochim Biophys Acta 1333:F85–F104

    PubMed  CAS  Google Scholar 

  89. Chai J, Tarnawski A (2002) Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing. J Physiol Pharmacol 53(2):147–157

    PubMed  CAS  Google Scholar 

  90. Buchwalter G, Gross C, Wasylyk B (2004) Ets ternary complex transcription factors. Gene 324:1–14

    PubMed  CAS  Google Scholar 

  91. Sharrocks AD (2002) Complexities in ETS-domain transcription factor function and regulation: lessons from the TCF (ternary complex factor) subfamily. Biochem Soc Trans 30:1–9

    PubMed  CAS  Google Scholar 

  92. Mo Y, Vaessen B, Johnston K et al (1998) Structures of SAP-1 bound to DNA targets from the E74 and c-fos promoters: insights into DNA sequence discrimination by Ets proteins. Mol Cell 2(2):210–212

    Google Scholar 

  93. Dalton S, Treisman R (1992) Characterization of SAP-1, a protein recruited by serum response factor to the c-Fos serum response element. Cell 68:597–612

    PubMed  CAS  Google Scholar 

  94. Giovane A, Sobieszczuk P, Ayadi A et al (1997) Net-b, a Ras-insensitive factor that forms ternary complexes with serum response factor on the serum response element of the fos promoter. Mol Cell Biol 17(10):5667–5678

    PubMed  CAS  Google Scholar 

  95. Janknecht R, Hunter T (1997) Convergence of MAP kinase pathways on the ternary complex factor Sap-1a. EMBO J 16(7):1620–1627

    PubMed  CAS  Google Scholar 

  96. Galanis A, Yang S-H, Sharrocks A (2001) Selective targeting of MAPKs to the ETS domain transcription factor SAP-1. J Biol Chem 276(2):965–973

    PubMed  CAS  Google Scholar 

  97. Martin P (1997) Wound healing. Aiming for perfect skin regeneration. Science 276:75–81

    PubMed  CAS  Google Scholar 

  98. Kerkela E, Saarialho-Kere U (2003) Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol 12:109–125

    PubMed  CAS  Google Scholar 

  99. Scott PG, Ghahary A, Tredget EE (2000) Molecular and cellular aspects of fibrosis following thermal injury. Hand Clin 16:271–287

    PubMed  CAS  Google Scholar 

  100. Tredget EE, Nedelec B, Scott PG et al (1997) Hypertrophic scars, keloids, and contractres. The cellular and molecular basis for therapy. Surg Clin North Am 77:701–730

    PubMed  CAS  Google Scholar 

  101. Deitch EA, Wheelahan TM, Rose MP et al (1983) Hypertrophic burn scars: analysis of variables. J Trauma 23:895–898

    Article  PubMed  CAS  Google Scholar 

  102. Mackay AR, Ballin M, Pelina MD et al (1992) Effect of phorbol ester and cytokines on matrix metalloproteinase and tissue inhibitor of metalloproteinase expression in tumor and normal cell lines. Invas Metast 12:168–184

    CAS  Google Scholar 

  103. Moon SE, Dame MK, Remick DR et al (2001) Induction of matrix metalloproteinase-1 (MMP-1) during epidermal invasion of the stroma in human skin organ culture: keratinocyte stimulation of fibroblasts MMP-1 production. Br J Cancer 85:1600–1605

    PubMed  CAS  Google Scholar 

  104. Stoll S, Garner W, Elder J (1997) Heparin-binding ligands mediate autocrine epidermal growth factor receptor activation in skin organ culture. J Clin Invest 100:1271–1281

    Article  PubMed  CAS  Google Scholar 

  105. Maas-Szabowski N, Stark HJ, Fusenig NE (2000) Keratinocyte growth regulation in defined organotypic cultures through IL-1-induced keratinocyte growth factor expression in resting fibroblasts. J Invest Dermatol 114:1075–1084

    PubMed  CAS  Google Scholar 

  106. Ghaffari A, Li Y, Karami A et al (2006) Fibroblast extrcellular matrix gene expression in response to keratinocyte-releasable stratifin. J Cell Biochem 98:383–393

    PubMed  CAS  Google Scholar 

  107. Moon SE, Bhagavathula N, Varani J (2002) Keratinocyte stimulation of matrix metalloproteinase-1 production and proliferation in fibroblasts: regulation through mitogen-activated protein kinase signalling events. Br J Cancer 87:457–464

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Ghahary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, A., Ghaffari, A., Kilani, R.T. et al. The role of stratifin in fibroblast–keratinocyte interaction. Mol Cell Biochem 305, 255–264 (2007). https://doi.org/10.1007/s11010-007-9538-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9538-y

Keywords

Navigation