Skip to main content

Advertisement

Log in

Modulation of p53, c-fos, RARE, cyclin A, and cyclin D1 expression in human leukemia (HL-60) cells exposed to arsenic trioxide

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Arsenic trioxide (As2O3) has recently been successfully used to treat all trans retinoic acid (ATRA) resistant relapsing acute promyelocytic leukemia. However, its molecular mechanisms of action are poorly understood. In the present study, we used the human leukemia (HL-60) cell line as a test model to study the cellular and molecular mechanisms of anti-cancer properties of As2O3. We hypothesized that As2O3-induced expression of stress genes and related proteins may play a role in the cellular and molecular events leading to cell cycle modulation in leukemic cells. To test this hypothesis, we performed Western blot analysis to assess the expression of specific cellular response proteins including p53, c-fos, RARE, Cyclin A, and Cyclin D1. Densitometric analysis was performed to determine the relative abundance of these proteins. Western Blot and densitometric analyses demonstrated a strong dose-response relationship with regard to p53 and RARE expression within the dose-range of 0–8 μg/ml. Expression of c-fos was slightly up-regulated at 2 μg/ml, and down-regulated within the dose-range of 4–8 μg/ml. A statistically significant down-regulation of this protein was detected at the 6 and 8 μg/ml dose levels. No statistically significant differences (p > 0.05) in Cyclin D1 expression was found between As2O3-treated cells and the control. Cyclin A expression in As2O3-treated HL-60 cells was up-regulated at 6 μg/ml, suggesting that it is required for S phase and passage through G2 phase in cell cycle progression. Taken together, these results indicate that As2O3 has the potential to induce cell cycle arrest through activation of the 53-kDa tumor suppressor protein and repression of the c-fos transcription factor. Up-regulation of RARE by As2O3 indicates that its cytotoxicity may be mediated through interaction/binding with the retinoic acid receptor, and subsequent inhibition of growth and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen GQ, Zhu J, Shi XG, Ni HJ, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, Shen ZX, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z (1996) In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: arsenic trioxide induces NB 4 cell apoptosis with down-regulation of bcl-2 expression and modulation of PML-RARα/PML proteins. Blood 88:1052–1061

    CAS  PubMed  Google Scholar 

  2. Rego EM, He LZ, Warrell RP Jr, Wang ZG, Pandolfi PP (2000) Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemiamogenic process induced by the PML-RARapha and PLZF-RARalpha oncoproteins. Proc Natl Acad Sci USA 97:10173–10178. doi:10.1073/pnas.180290497

    Article  CAS  PubMed  Google Scholar 

  3. Zhu J, Koken MHM, Quignon F, Chelbi-Alix MK, Degos L, Wang ZY, Chen Z, de Thé H (1997) Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci USA 94:3978–3983. doi:10.1073/pnas.94.8.3978

    Article  CAS  PubMed  Google Scholar 

  4. Bode A, Dong Z (2000) Apoptosis induction by arsenic: mechanisms of action and possible clinical applications for treating therapy-resistant cancers. J Drug Resist Updat 3:21–29. doi:10.1054/drup.2000.0114

    Article  CAS  Google Scholar 

  5. Bode AM, Dong Z (2002) The paradox of arsenic: molecular mechanisms of cell transformation and chemotherapeutic effects. Crit Rev Oncol Hematol 42:5–24. doi:10.1016/S1040-8428(01)00215-3

    Article  PubMed  Google Scholar 

  6. Wang ZY, Chen Z (2000) Differentiation and apoptosis induction therapy in acute promyelocytic leukemia. Lancet Oncol 1:101–106. doi:10.1016/S1470-2045(00)00017-6 Review

    Article  PubMed  Google Scholar 

  7. Freshney RI (1983) Culture of animal cells. A manual of basic techniques. Alan Liss Inc (University Library)

  8. Yedjou CG, Tchounwou PB (2007) In vitro cytotoxic and genotoxic effects of arsenic trioxide on human leukemia (HL-60) cells using the MTT and alkaline single cell gel electrophoresis (Comet) assays. Mol Cell Biochem 301:123–130. doi:10.1007/s11010-006-9403-4

    Article  CAS  PubMed  Google Scholar 

  9. Bradford MM (1976) A rapid, sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  10. Powles T, Poele te R, Shamash J, Chaplin T, Propper D, Joel S, Oliver T, Lui MW (2005) Cannnabis-induced cytotoxicity in leukemic cell lines: the role of the cannabinoid receptors and the MAPK pathway. Blood 105(3): 1214–1221. doi:10.1182/blood-2004-03-1182

    Google Scholar 

  11. States JC, Reiners JJ Jr, Pounds JG, Kaplan DJ, Beauerle BD, McNeely SC, Mathieu P, McCabe MJ Jr (2002) Arsenite disrupts mitosis and induces apoptosis in SV40-transformed human skin fibroblasts. Toxicol Appl Pharmacol 180:83–91. doi:10.1006/taap.2002.9376

    Article  CAS  PubMed  Google Scholar 

  12. Huang SC, Lee TC (1998) Arsenite inhibits mitotic division and perturbs spindle dynamics in HeLa S3 cells. Carcinogenesis 19:889–896. doi:10.1093/carcin/19.5.889

    Article  CAS  PubMed  Google Scholar 

  13. McCabe MJ Jr, Singh KP, Reddy SA, Chelladurai B, Pounds JG, Reiners JJ Jr, States JC (2000) Sensitivity of myelomonocytic leukemia cells to arsenite-induced cell cycle disruption, apoptosis, and enhanced differentiation is dependent on the inter-relationship between arsenic concentration, duration of treatment and cell cycle phase. J Pharmacol Exp Ther 295:724–733

    CAS  PubMed  Google Scholar 

  14. McCollum G, Keng PC, States JC, McCabe MJ Jr (2005) Arsenite delays progression through each cell cycle phase and induces apoptosis following G2/M arrest in U937 myeloid leukemia cells. J Pharmacol Exp Ther 313:877–887. doi:10.1124/jpet.104.080713

    Article  CAS  PubMed  Google Scholar 

  15. Fleckenstein DS, Uphoff CG, Drexler HG, Quentmeier H (2002) Detection of p53 gene mutations by single strand conformational polymorphism (SSCP) in human acute myeloid leukemia-derived cell lines. Leuk Res 26:207–214. doi:10.1016/S0145-2126(01)00107-2

    Article  CAS  PubMed  Google Scholar 

  16. Erster S, Mihara M, Kim RH, Petrenko O, Moll UM (2004) In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 24:6728–6741. doi:10.1128/MCB.24.15.6728-6741.2004

    Article  CAS  PubMed  Google Scholar 

  17. Bonini P, Cicconi S, Cardinale A, Vitale C, Serafino AL, Ciotti MT, Marlier LN (2004) Oxidative stress induces p53-mediated apoptosis in glia: p53 transcription-independent way to die. J Neurosci Res 75:83–95. doi:10.1002/jnr.10822

    Article  CAS  PubMed  Google Scholar 

  18. Endo H, Kamada H, Nito C, Nishi T, Chan PH (2006) Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci 26:7974–7983. doi:10.1523/JNEUROSCI.0897-06.2006

    Article  CAS  PubMed  Google Scholar 

  19. Dumont P, Leu JI, Della Pietra ACIII, George DL, Murphy M (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33:357–365. doi:10.1038/ng1093

    Article  CAS  PubMed  Google Scholar 

  20. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014. doi:10.1126/science.1092734

    Article  CAS  PubMed  Google Scholar 

  21. Arima Y, Nitta M, Kuninaka S, Zhang D, Fujiwara T, Taya Y, Nakao M, Saya H (2005) Transcriptional blockade induces p53-dependent apoptosis associated with translocation of p53 to mitochondria. J Biol Chem 280:19166–19176. doi:10.1074/jbc.M410691200

    Article  CAS  PubMed  Google Scholar 

  22. Patlolla AK, Tchounwou PB (2005) Cytogenetic evaluation of arsenic trioxide in Sprague-Dawley rats. Mutat Res 587:126–133

    CAS  PubMed  Google Scholar 

  23. Volgelstein B, Kinzler KW (1992) p53 function and dysfunction. Cell 70:523–526. doi:10.1016/0092-8674(92)90421-8

    Article  Google Scholar 

  24. Hollstein M, Rice K, Greenbalt MS, Soussi T, Fuchs R, Sorlie T, Hovig E, Smith-Sorenson B, Montesano R, Harris CC (1994) Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22:3551–3555

    CAS  PubMed  Google Scholar 

  25. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356:215–221. doi:10.1038/356215a0

    Article  CAS  PubMed  Google Scholar 

  26. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, Friend SH (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238. doi:10.1126/science.1978757

    Article  CAS  PubMed  Google Scholar 

  27. Tchounwou PB, Yedjou CG, Dorsey WC (2003) Arsenic trioxide induced transcriptional activation and expression of stress genes in human liver carcinoma cells (HepG2). Cell Mol BiologyTM 49(7):1071–1079

    CAS  Google Scholar 

  28. Erster S, Moll UM (2005) Stress-induced p53 runs a transcription-independent death program. Biochem Biophys Res Commun 331:843–850. doi:10.1016/j.bbrc.2005.03.187

    Article  CAS  PubMed  Google Scholar 

  29. Schuler M, Green DR (2005) Transcription, apoptosis and p53: catch-22. Trends Genet 21:182–187. doi:10.1016/j.tig.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  30. Kley N, Chung RY, Fay S, Loeffler JP, Seizinger BR (1992) Repression of the basal c-fos promoter by wild-type p53. Nucleic Acids Res 20:4083–4087. doi:10.1093/nar/20.15.4083

    Article  CAS  PubMed  Google Scholar 

  31. Lackinger D, Kaina B (2000) Primary mouse fibroblasts deficient for c-Fos, p53 or for both proteins are hypersensitive to UV light and alkylating agent-induced chromosomal breakage and apoptosis. Mutat Res 457:113–123. doi:10.1016/S0027-5107(00)00133-0

    CAS  PubMed  Google Scholar 

  32. Nango R, Chieko T, Tsukamoto I (2003) Jun N-terminal kinase activation and upregulation of p53 and p21 in selenite-induced apoptosis of regenerating liver. Eur J Pharmacol 47:1–8. doi:10.1016/S0014-2999(03)01764-3

    Article  Google Scholar 

  33. Daum G, Pham J, Deou J (2001) Arsenite inhibits Ras-dependent activation of ERK but activates ERK in the presence of oncogenic Ras in baboon vascular smooth muscle cells. Mol Cell Biochem 217:131–136. doi:10.1023/A:1007276812824

    Article  CAS  PubMed  Google Scholar 

  34. Draetta GF (1994) Mammalian G 1 cyclins. Curr Opin Cell Biol 6:842–846. doi:10.1016/0955-0674(94)90054-X

    Article  CAS  PubMed  Google Scholar 

  35. Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163. doi:10.1101/gad.9.10.1149

    Article  CAS  PubMed  Google Scholar 

  36. Sgambato A, Han EK, Zhang YJ, Moon RC, Santella RM, Weinstein IB (1995) Deregulated expression of cyclin D1 and other cell cycle-related genes in carcinogen-induced rat mammary tumors. Carcinogenesis 16:2193–2198. doi:10.1093/carcin/16.9.2193

    Article  CAS  PubMed  Google Scholar 

  37. Weinstat-Saslow D, Merino MJ, Manrow RE, Bluth RF, Wittenbel KD, Simpson JF (1995) Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from nonmalignant lesions. Nat Med 1:1257–1260. doi:10.1038/nm1295-1257

    Article  CAS  PubMed  Google Scholar 

  38. Hunter T, Pines J (1994) Cyclins and cancer. II: cyclin D and CDK inhibitors come of age. Cell 79:573–582. doi:10.1016/0092-8674(94)90543-6

    Article  CAS  PubMed  Google Scholar 

  39. Grana X, Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11:211–219

    CAS  PubMed  Google Scholar 

  40. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV (1994) Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671. doi:10.1038/369669a0

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Lin SC (1997) Molecular characterization of the cyclin-dependent kinase inhibitor p27 promoter. Biochim Biophys Acta 1353:307–311

    CAS  PubMed  Google Scholar 

  42. Lee RJ, Albanese C, Stenger RJ, Watanabe G, Inghirami G, Haines GK 3rd, Webster M, Muller WJ, Brugge JS, Davis RJ, Pestell RG (1999) 60(v-src) induction of cyclin D1 requires collaborative interactions between the extracellular signal-regulated kinase, p38, and Jun kinase pathways. A role for cAMP response element-binding protein and activating transcription factor-2 in pp60(v-src) signaling in breast cancer cells. J Biol Chem 274:7341–7350. doi:10.1074/jbc.274.11.7341

    Article  CAS  PubMed  Google Scholar 

  43. Ouyang W, Li J, Ma Q, Huang C (2006) Essential roles of PI-3K/Akt/IKK beta}/NF {kappa B pathway in cyclin D1 induction by arsenite in JB6 Cl41 cells. Carcinogenesis 27(4):864–873. doi:10.1093/carcin/bgi321

    Article  CAS  PubMed  Google Scholar 

  44. Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J (1996) Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271:20608–20616. doi:10.1074/jbc.271.34.20608

    Article  CAS  PubMed  Google Scholar 

  45. Rodriguez-Puebla ML, Robles AI, Conti CJ (1999) ras activity and cyclin D1 expression: an essential mechanism of mouse skin tumor development. Mol Carcinog 24(1):1–6. doi:10.1002/(SICI)1098-2744(199901)24:1≤1::AID-MC1≥3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  46. Girard F, Strausfeld U, Fernandez A, Lamb NJ (1991) Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67:1169–1179. doi:10.1016/0092-8674(91)90293-8

    Article  CAS  PubMed  Google Scholar 

  47. Pagano MR, Pepperkok F, Verde W, Ansorge Draetta G (1992) Cyclin A is required at two points in the human cell cycle. EMBO (Eur Mol Biol Organ) J 11:961–971

    CAS  Google Scholar 

  48. Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79:551–555. doi:10.1016/0092-8674(94)90540-1

    Article  CAS  PubMed  Google Scholar 

  49. Breitman T, Collins S, Selonick S (1980) Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA 77:2936. doi:10.1073/pnas.77.5.2936

    Article  CAS  PubMed  Google Scholar 

  50. Breitman T, Collins SJ, Keene B (1981) Terminal differentiation of human promeylocytic cells in culture in response to retinoic acid. Blood 57:1000

    CAS  PubMed  Google Scholar 

  51. Evans TRJ, Kaye SB (1999) Retinoids present role and future potential. Br J Cancer 80:1–8. doi:10.1038/sj.bjc.6690312

    Article  CAS  PubMed  Google Scholar 

  52. Hong WK, Lippman SM, Itri LM, Karp DD, Lee JS, Byers RM, Schuntz SS, Kramer AM, Lotan R, Peters LL, Dimery TW, Brown BW (1990) Goepfert: prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N Engl J Med 323:795–801

    CAS  PubMed  Google Scholar 

  53. Lippman SM, Lee JJ, Sabichi AL (1998) Cancer chemoprevention: progress and promise. J Natl Cancer Inst 85:1492–1498

    Google Scholar 

  54. Zhang P, Wang SY, Hu XH (1996) Arsenic trioxide treated 72 cases of acute promyelocytic leukemia. Chin J Hematol 17:58–60

    Google Scholar 

  55. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qin QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou C, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z, Wang ZY (1997) Use of arsenic trioxide in the treatment of acute promyelocytic leukemia (APL): II clinical efficacy and pharmacokinetics in relapsed patients. Blood 89:3354–3360

    CAS  PubMed  Google Scholar 

  56. Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, Corso D, deBlasio A, Gabrilove J, Scheinberg DA, Pandolfi PP, Warrell RP Jr (1998) Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 339:1341–1348. doi:10.1056/NEJM199811053391901

    Article  CAS  PubMed  Google Scholar 

  57. Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, Han ZG, Ni JH, Shi GY, Jia PM, Liu MM, He KL, Niu C, Ma J, Zhang P, Zhang TD, Paul P, Naoe T, Kitamura K, Miller W, Waxman S, Wang ZY, de The H, Chen SJ, Chen Z (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89:3345–3353

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by a grant from the National Institutes of Health (Grant No. 2G12RR13459-11), through the RCMI-Center for Environmental Health at Jackson State University. The authors thank Dr. Ronald Mason: President and Dr. Abdul Mohamed: Dean Emeritus of College of Science, Engineering & Technology at Jackson State University, for their technical support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Tchounwou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yedjou, C.G., Tchounwou, P.B. Modulation of p53, c-fos, RARE, cyclin A, and cyclin D1 expression in human leukemia (HL-60) cells exposed to arsenic trioxide. Mol Cell Biochem 331, 207–214 (2009). https://doi.org/10.1007/s11010-009-0160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0160-z

Keywords

Navigation