Skip to main content

Advertisement

Log in

The Nm23-H1–h-Prune complex in cellular physiology: a ‘tip of the iceberg’ protein network perspective

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nm23-H1 (also known as NDPKA) and h-Prune form a protein complex that is part of a little-understood protein network. Modifications of this complex correlate with cancer status. Here, we focus on the role of the Nm23-H1–h-Prune complex in cellular physiology, through an analysis of the balance between the ‘bound’ and ‘non-bound’ states of Nm23-H1 and h-Prune, whereby we speculate on the ‘read-out’ during cell homeostasis under non-balanced conditions. We have analysed the biochemical activities of both Nm23-H1 and h-Prune alone and in combination, focussing on the anti-metastatic activity of Nm23-H1. We have then investigated the cellular mechanisms responsible for the formation of the Nm23-H1–h-Prune complex. To evaluate the importance of the equilibrium between the formation of the Nm23-H1–h-Prune complex and the ‘free’ levels of Nm23-H1 and h-Prune, we propose a model based on a pro-cancer condition where this equilibrium is negatively affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Steeg PS, Bevilacqua G, Pozzatti R, Liotta LA, Sobel ME (1988) Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res 48:6550–6554

    PubMed  CAS  Google Scholar 

  2. Reymond A, Volorio S, Merla G, Al-Maghtheh M, Zuffardi O, Bulfone A, Ballabio A, Zollo M (1999) Evidence for interaction between human PRUNE and nm23-H1 NDPKinase. Oncogene 18:7244–7252. doi:10.1038/sj.onc.1203140

    Article  PubMed  CAS  Google Scholar 

  3. Mochizuki T, Bilitou A, Waters CT, Hussain K, Zollo M, Ohnuma SI (2009) Xenopus NM23-X4 regulates retinal gliogenesis through interaction with p27Xic1. Neural Dev 4:1. doi:10.1186/1749-8104-4-1

    Article  PubMed  Google Scholar 

  4. Tseng YH, Vicent D, Zhu J, Niu Y, Adeyinka A, Moyers JS, Watson PH, Kahn CR (2001) Regulation of growth and tumorigenicity of breast cancer cells by the low molecular weight GTPase Rad and nm23. Cancer Res 61:2071–2079

    PubMed  CAS  Google Scholar 

  5. Zhu J, Tseng YH, Kantor JD, Rhodes CJ, Zetter BR, Moyers JS, Kahn CR (1999) Interaction of the Ras-related protein associated with diabetes rad and the putative tumor metastasis suppressor NM23 provides a novel mechanism of GTPase regulation. Proc Natl Acad Sci USA 96:14911–14918. doi:10.1073/pnas.96.26.14911

    Article  PubMed  CAS  Google Scholar 

  6. Otsuki Y, Tanaka M, Yoshii S, Kawazoe N, Nakaya K, Sugimura H (2001) Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci USA 98:4385–4390. doi:10.1073/pnas.071411598

    Article  PubMed  CAS  Google Scholar 

  7. Palacios F, Schweitzer JK, Boshans RL, D’Souza-Schorey C (2002) ARF6-GTP recruits Nm23–H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol 4:929–936. doi:10.1038/ncb881

    Article  PubMed  CAS  Google Scholar 

  8. Subramanian C, Cotter MAII, Robertson ES (2001) Epstein-Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: a molecular link to cancer metastasis. Nat Med 7:350–355. doi:10.1038/85499

    Article  PubMed  CAS  Google Scholar 

  9. Hartsough MT, Morrison DK, Salerno M, Palmieri D, Ouatas T, Mair M, Patrick J, Steeg PS (2002) Nm23-H1 metastasis suppressor phosphorylation of kinase suppressor of Ras via a histidine protein kinase pathway. J Biol Chem 277:32389–32399. doi:10.1074/jbc.M203115200

    Article  PubMed  CAS  Google Scholar 

  10. D’Angelo A, Garzia L, Andre A, Carotenuto P, Aglio V, Guardiola O, Arrigoni G, Cossu A, Palmieri G, Aravind L, Zollo M (2004) Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. Cancer Cell 5:137–149. doi:10.1016/S1535-6108(04)00021-2

    Article  PubMed  Google Scholar 

  11. Timmons L, Shearn A (1996) Germline transformation using a prune cDNA rescues prune/killer of prune lethality and the prune eye color phenotype in Drosophila. Genetics 144:1589–1600

    PubMed  CAS  Google Scholar 

  12. Garzia L, D’Angelo A, Amoresano A, Knauer SK, Cirulli C, Campanella C, Stauber RH, Steegborn C, Iolascon A, Zollo M (2008) Phosphorylation of nm23-H1 by CKI induces its complex formation with h-prune and promotes cell motility. Oncogene 27:1853–1864. doi:10.1038/sj.onc.1210822

    Article  PubMed  CAS  Google Scholar 

  13. Middelhaufe S, Garzia L, Ohndorf UM, Kachholz B, Zollo M, Steegborn C (2007) Domain mapping on the human metastasis regulator protein h-Prune reveals a C-terminal dimerization domain. Biochem J 407:199–205. doi:10.1042/BJ20070408

    Article  PubMed  CAS  Google Scholar 

  14. Zollo M, Andre A, Cossu A, Sini MC, D’Angelo A, Marino N, Budroni M, Tanda F, Arrigoni G, Palmieri G (2005) Overexpression of h-prune in breast cancer is correlated with advanced disease status. Clin Cancer Res 11:199–205

    PubMed  CAS  Google Scholar 

  15. Marino N, Zollo M (2007) Understanding h-prune biology in the fight against cancer. Clin Exp Metastasis 24:637–645. doi:10.1007/s10585-007-9109-3

    Article  PubMed  CAS  Google Scholar 

  16. Tammenkoski M, Koivula K, Cusanelli E, Zollo M, Steegborn C, Baykov AA, Lahti R (2008) Human metastasis regulator protein H-prune is a short-chain exopolyphosphatase. Biochemistry 47:9707–9713. doi:10.1021/bi8010847

    Article  PubMed  CAS  Google Scholar 

  17. Beavo JA, Brunton LL (2002) Cyclic nucleotide research—still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718. doi:10.1038/nrm911

    Article  PubMed  CAS  Google Scholar 

  18. Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109:366–398. doi:10.1016/j.pharmthera.2005.07.003

    Article  PubMed  CAS  Google Scholar 

  19. Meinkoth JL, Alberts AS, Went W, Fantozzi D, Taylor SS, Hagiwara M, Montminy M, Feramisco JR (1993) Signal transduction through the cAMP-dependent protein kinase. Mol Cell Biochem 127–128:179–186. doi:10.1007/BF01076769

    Article  PubMed  Google Scholar 

  20. D’Angelo A, Zollo M (2004) Unraveling genes and pathways influenced by H-prune PDE overexpression: a model to study cellular motility. Cell Cycle 3:758–761

    PubMed  Google Scholar 

  21. Kulaev IS, Kulakovskaya TV, Andreeva NA, Lichko LP (1999) Metabolism and function of polyphosphates in bacteria and yeast. Prog Mol Subcell Biol 23:27–43

    PubMed  CAS  Google Scholar 

  22. Lichko LP, Andreeva NA, Kulakovskaya TV, Kulaev IS (2003) Exopolyphosphatases of the yeast Saccharomyces cerevisiae. FEMS Yeast Res 3:233–238. doi:10.1016/S1567-1356(02)00205-2

    Article  PubMed  CAS  Google Scholar 

  23. Garzia L, Roma C, Tata N, Pagnozzi D, Pucci P, Zollo M (2006) H-prune-nm23-H1 protein complex and correlation to pathways in cancer metastasis. J Bioenerg Biomembr 38:205–213. doi:10.1007/s10863-006-9036-z

    Article  PubMed  CAS  Google Scholar 

  24. Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett JR (1992) Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim Biophys Acta 1114:147–162

    PubMed  CAS  Google Scholar 

  25. Woodgett JR (1991) A common denominator linking glycogen metabolism, nuclear oncogenes and development. Trends Biochem Sci 16:177–181. doi:10.1016/0968-0004(91)90071-3

    Article  PubMed  CAS  Google Scholar 

  26. Kobayashi T, Hino S, Oue N, Asahara T, Zollo M, Yasui W, Kikuchi A (2006) Glycogen synthase kinase 3 and h-prune regulate cell migration by modulating focal adhesions. Mol Cell Biol 26:898–911. doi:10.1128/MCB.26.3.898-911.2006

    Article  PubMed  CAS  Google Scholar 

  27. Schafer DA, Cooper JA (1995) Control of actin assembly at filament ends. Annu Rev Cell Dev Biol 11:497–518. doi:10.1146/annurev.cb.11.110195.002433

    Article  PubMed  CAS  Google Scholar 

  28. Ouatas T, Salerno M, Palmieri D, Steeg PS (2003) Basic and translational advances in cancer metastasis: Nm23. J Bioenerg Biomembr 35:73–79. doi:10.1023/A:1023497924277

    Article  PubMed  CAS  Google Scholar 

  29. Hartsough MT, Steeg PS (2000) Nm23/nucleoside diphosphate kinase in human cancers. J Bioenerg Biomembr 32:301–308. doi:10.1023/A:1005597231776

    Article  PubMed  CAS  Google Scholar 

  30. Postel EH (1998) NM23-NDP kinase. Int J Biochem Cell Biol 30:1291–1295. doi:10.1016/S1357-2725(98)00087-9

    Article  PubMed  CAS  Google Scholar 

  31. Boissan M, Poupon MF, Lacombe ML (2007). NM23 and metastasis suppressor genes: update. Med Sci (Paris) 23:1115–1123

    Google Scholar 

  32. Salerno M, Ouatas T, Palmieri D, Steeg PS (2003) Inhibition of signal transduction by the nm23 metastasis suppressor: possible mechanisms. Clin Exp Metastasis 20:3–10. doi:10.1023/A:1022578000022

    Article  PubMed  CAS  Google Scholar 

  33. Ma D, McCorkle JR, Kaetzel DM (2004) The metastasis suppressor NM23–H1 possesses 3′-5′ exonuclease activity. J Biol Chem 279:18073–18084. doi:10.1074/jbc.M400185200

    Article  PubMed  CAS  Google Scholar 

  34. Kaetzel DM, Zhang Q, Yang M, McCorkle JR, Ma D, Craven RJ (2006) Potential roles of 3′-5′ exonuclease activity of NM23-H1 in DNA repair and malignant progression. J Bioenerg Biomembr 38:163–167. doi:10.1007/s10863-006-9040-3

    Article  PubMed  CAS  Google Scholar 

  35. Kimura N, Shimada N, Ishijima Y, Fukuda M, Takagi Y, Ishikawa N (2003) Nucleoside diphosphate kinases in mammalian signal transduction systems: recent development and perspective. J Bioenerg Biomembr 35:41–47. doi:10.1023/A:1023489722460

    Article  PubMed  CAS  Google Scholar 

  36. Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7:79–94. doi:10.1038/nrc2069

    Article  PubMed  CAS  Google Scholar 

  37. Ohkura N, Kishi M, Tsukada T, Yamaguchi K (2001) Menin, a gene product responsible for multiple endocrine neoplasia type 1, interacts with the putative tumor metastasis suppressor nm23. Biochem Biophys Res Commun 282:1206–1210. doi:10.1006/bbrc.2001.4723

    Article  PubMed  CAS  Google Scholar 

  38. Symons M, Settleman J (2000) Rho family GTPases: more than simple switches. Trends Cell Biol 10:415–419. doi:10.1016/S0962-8924(00)01832-8

    Article  PubMed  CAS  Google Scholar 

  39. Freije JM, Blay P, MacDonald NJ, Manrow RE, Steeg PS (1997) Site-directed mutation of Nm23–H1. Mutations lacking motility suppressive capacity upon transfection are deficient in histidine-dependent protein phosphotransferase pathways in vitro. J Biol Chem 272:5525–5532. doi:10.1074/jbc.272.9.5525

    Article  PubMed  CAS  Google Scholar 

  40. Zhou Q, Yang X, Zhu D, Ma L, Zhu W, Sun Z, Yang Q (2007) Double mutant P96S/S120G of Nm23-H1 abrogates its NDPK activity and motility-suppressive ability. Biochem Biophys Res Commun 356:348–353. doi:10.1016/j.bbrc.2007.02.066

    Article  PubMed  CAS  Google Scholar 

  41. Forus A, D’Angelo A, Henriksen J, Merla G, Maelandsmo GM, Florenes VA, Olivieri S, Bjerkehagen B, Meza-Zepeda LA, del Vecchio Blanco F, Muller C, Sanvito F, Kononen J, Nesland JM, Fodstad O, Reymond A, Kallioniemi OP, Arrigoni G, Ballabio A, Myklebost O, Zollo M (2001) Amplification and overexpression of PRUNE in human sarcomas and breast carcinomas—a possible mechanism for altering the nm23-H1 activity. Oncogene 20:6881–6890. doi:10.1038/sj.onc.1204874

    Article  PubMed  CAS  Google Scholar 

  42. Oue N, Yoshida K, Noguchi T, Sentani K, Kikuchi A, Yasui W (2007) Increased expression of h-prune is associated with tumor progression and poor survival in gastric cancer. Cancer Sci 98:1198–1205. doi:10.1111/j.1349-7006.2007.00515.x

    Article  PubMed  CAS  Google Scholar 

  43. Noguchi T, Oue N, Wada S, Sentani K, Sakamoto N, Kikuchi A, Yasui W (2009) h-prune is an independent prognostic marker for survival in esophageal squamous cell carcinoma. Ann Surg Oncol 16:1390–1396. doi:10.1245/s10434-007-9585-3

    Article  PubMed  Google Scholar 

  44. Postel EH (2003) Multiple biochemical activities of NM23/NDP kinase in gene regulation. J Bioenerg Biomembr 35:31–40. doi:10.1023/A:1023485505621

    Article  PubMed  CAS  Google Scholar 

  45. Bevilacqua G, Sobel ME, Liotta LA, Steeg PS (1989) Association of low nm23 RNA levels in human primary infiltrating ductal breast carcinomas with lymph node involvement and other histopathological indicators of high metastatic potential. Cancer Res 49:5185–5190

    PubMed  CAS  Google Scholar 

  46. Florenes VA, Aamdal S, Myklebost O, Maelandsmo GM, Bruland OS, Fodstad O (1992) Levels of nm23 messenger RNA in metastatic malignant melanomas: inverse correlation to disease progression. Cancer Res 52:6088–6091

    PubMed  CAS  Google Scholar 

  47. Yamaguchi A, Urano T, Goi T, Takeuchi K, Niimoto S, Nakagawara G, Furukawa K, Shiku H (1994) Expression of human nm23-H1 and nm23-H2 proteins in hepatocellular carcinoma. Cancer 73:2280–2284. doi:10.1002/1097-0142(19940501)73:9<2280::AID-CNCR2820730908>3.0.CO;2-3

    Article  PubMed  CAS  Google Scholar 

  48. Malins DC, Polissar NL, Gunselman SJ (1996) Tumor progression to the metastatic state involves structural modifications in DNA markedly different from those associated with primary tumor formation. Proc Natl Acad Sci USA 93:14047–14052. doi:10.1073/pnas.93.24.14047

    Article  PubMed  CAS  Google Scholar 

  49. Haut M, Steeg PS, Willson JK, Markowitz SD (1991) Induction of nm23 gene expression in human colonic neoplasms and equal expression in colon tumors of high and low metastatic potential. J Natl Cancer Inst 83:712–716. doi:10.1093/jnci/83.10.712

    Article  PubMed  CAS  Google Scholar 

  50. Muller W, Schneiders A, Hommel G, Gabbert HE (1998) Expression of nm23 in gastric carcinoma: association with tumor progression and poor prognosis. Cancer 83:2481–2487. doi:10.1002/(SICI)1097-0142(19981215)83:12<2481::AID-CNCR11>3.0.CO;2-P

    Article  PubMed  CAS  Google Scholar 

  51. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW (1997) Gene expression profiles in normal and cancer cells. Science 276:1268–1272. doi:10.1126/science.276.5316.1268

    Article  PubMed  CAS  Google Scholar 

  52. Carotenuto P, Marino N, Bello AM, D’Angelo A, Di Porzio U, Lombardi D, Zollo M (2006) PRUNE and NM23-M1 expression in embryonic and adult mouse brain. J Bioenerg Biomembr 38:233–246. doi:10.1007/s10863-006-9044-z

    Article  PubMed  CAS  Google Scholar 

  53. Gervasi F, D’Agnano I, Vossio S, Zupi G, Sacchi A, Lombardi D (1996) nm23 influences proliferation and differentiation of PC12 cells in response to nerve growth factor. Cell Growth Differ 7:1689–1695

    PubMed  CAS  Google Scholar 

  54. Dabernat S, Larou M, Masse K, Dobremez E, Landry M, Mathieu C, Daniel JY (1999) Organization and expression of mouse nm23–M1 gene. Comparison with nm23-M2 expression. Gene 236:221–230. doi:10.1016/S0378-1119(99)00288-7

    Article  PubMed  CAS  Google Scholar 

  55. Masse K, Dabernat S, Bourbon PM, Larou M, Amrein L, Barraud P, Perel Y, Camara M, Landry M, Lacombe ML, Daniel JY (2002) Characterization of the nm23-M2, nm23-M3 and nm23-M4 mouse genes: comparison with their human orthologs. Gene 296:87–97. doi:10.1016/S0378-1119(02)00836-3

    Article  PubMed  CAS  Google Scholar 

  56. Arnaud-Dabernat S, Bourbon PM, Dierich A, Le Meur M, Daniel JY (2003) Knockout mice as model systems for studying nm23/NDP kinase gene functions. Application to the nm23-M1 gene. J Bioenerg Biomembr 35:19–30. doi:10.1023/A:1023561821551

    Article  PubMed  CAS  Google Scholar 

  57. Srivastava S, Zhdanova O, Di L, Li Z, Albaqumi M, Wulff H, Skolnik EY (2008) Protein histidine phosphatase 1 negatively regulates CD4 T cells by inhibiting the K+ channel KCa3.1. Proc Natl Acad Sci USA 105:14442–14446. doi:10.1073/pnas.0803678105

    Article  PubMed  CAS  Google Scholar 

  58. Cuello F, Schulze RA, Heemeyer F, Meyer HE, Lutz S, Jakobs KH, Niroomand F, Wieland T (2003) Activation of heterotrimeric G proteins by a high energy phosphate transfer via nucleoside diphosphate kinase (NDPK) B and Gbeta subunits. Complex formation of NDPK B with Gbeta gamma dimers and phosphorylation of His-266 IN Gbeta. J Biol Chem 278:7220–7226. doi:10.1074/jbc.M210304200

    Article  PubMed  CAS  Google Scholar 

  59. Ljubimov AV, Caballero S, Aoki AM, Pinna LA, Grant MB, Castellon R (2004) Involvement of protein kinase CK2 in angiogenesis and retinal neovascularization. Invest Ophthalmol Vis Sci 45:4583–4591. doi:10.1167/iovs.04-0686

    Article  PubMed  Google Scholar 

  60. Landesman-Bollag E, Channavajhala PL, Cardiff RD, Seldin DC (1998) p53 deficiency and misexpression of protein kinase CK2alpha collaborate in the development of thymic lymphomas in mice. Oncogene 16:2965–2974. doi:10.1038/sj.onc.1201854

    Article  PubMed  CAS  Google Scholar 

  61. Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC (2001) Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 20:3247–3257. doi:10.1038/sj.onc.1204411

    Article  PubMed  CAS  Google Scholar 

  62. Engel M, Issinger OG, Lascu I, Seib T, Dooley S, Zang KD, Welter C (1994) Phosphorylation of nm23/nucleoside diphosphate kinase by casein kinase 2 in vitro. Biochem Biophys Res Commun 199:1041–1048. doi:10.1006/bbrc.1994.1334

    Article  PubMed  CAS  Google Scholar 

  63. Han KY, Hong BS, Yoon YJ, Yoon CM, Kim YK, Kwon YG, Gho YS (2007) Polyphosphate blocks tumour metastasis via anti-angiogenic activity. Biochem J 406:49–55. doi:10.1042/BJ20061542

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the FP6-E.E.T pipeline LSH-CT-2006-037260, TuMIC LSH-CT HEALTH-2007-2.4.1-6 and Associazione Italiana per la Lotta al Neuroblastoma, an Associazione Italiana per la Lotta al Neuroblastoma Research Fellowship (A.G.) and an AIRC 2007-8 grant. We also thank the CEINGE services laboratory for several of the strategies that were developed for the use of proteomic and translational approaches within these projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Zollo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galasso, A., Zollo, M. The Nm23-H1–h-Prune complex in cellular physiology: a ‘tip of the iceberg’ protein network perspective. Mol Cell Biochem 329, 149–159 (2009). https://doi.org/10.1007/s11010-009-0115-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0115-4

Keywords

Navigation