Skip to main content
Log in

Chronic treatment with the peroxisome proliferator-activated receptor α agonist Wy-14,643 attenuates myocardial respiratory capacity and contractile function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We investigated whether chronic in vivo treatment with the peroxisome proliferator-activated receptor α agonist Wy-14,643 attenuates cardiac contractile function by impairing mitochondrial respiration. Wy-14,643 (25 mg kg−1 day−1) was administered to Wistar rats by oral gavage for 14 consecutive days, after which ex vivo heart function, myocardial mitochondrial respiratory capacity, and metabolic gene expression were determined. Body and heart weights were not significantly altered following 14 days of Wy-14,643 administration. Heart perfusion studies showed significantly reduced systolic and developed pressures, while the rate pressure product declined by 36 ± 2.6% (P < 0.01 vs. vehicle) after 14 days of Wy-14,643 treatment. State 3 mitochondrial respiration was lower in the Wy-14,643 group (P = 0.06 vs. vehicle). State 4 respiration and oligomycin-insensitive proton leak were significantly increased compared with matched controls. The rate of ADP phosphorylation was also decreased by 44.9 ± 1.9% (P < 0.05 vs. vehicle). Pyruvate dehydrogenase kinase 4 (PDK4) and uncoupling protein 3 (UCP3) transcript levels were upregulated, while cytochrome oxidase II (COXII) expression was decreased following Wy-14,643 treatment. This study demonstrates that chronic in vivo Wy-14,643 administration impaired cardiac contractile function in parallel with decreased mitochondrial respiratory function and increased uncoupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barger PM, Kelly DP (2000) PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med 10:238–245. doi:10.1016/S1050-1738(00)00077-3

    Article  CAS  PubMed  Google Scholar 

  2. Kersten S, Desvergne B et al (2000) Roles of PPARs in health disease. Nature 405:421–424. doi:10.1038/35013000

    Article  CAS  PubMed  Google Scholar 

  3. Lee KC, Lee KW (2001) Nuclear receptors, coactivators and chromatin: new approaches, new insights. Trends Endocrinol Metab 12:191–197. doi:10.1016/S1043-2760(01)00392-7

    Article  CAS  PubMed  Google Scholar 

  4. Forman BM, Chen J et al (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferators-activated receptors alpha and delta. Proc Natl Acad Sci USA 94:4312–4317. doi:10.1073/pnas.94.9.4312

    Article  CAS  PubMed  Google Scholar 

  5. Kliewer SA, Umesono K et al (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358:771–774. doi:10.1038/358771a0

    Article  CAS  PubMed  Google Scholar 

  6. Latruffe N, Cherkaoui MM et al (2001) Peroxisome proliferator-activated receptors as physiological sensors of fatty acid metabolism: molecular regulation in peroxisomes. Biochem Soc Trans 29:305–309. doi:10.1042/BST0290305

    Article  CAS  PubMed  Google Scholar 

  7. Wahli W, Braissant O et al (1995) Peroxisome proliferator-activated receptors: transcriptional regulators of adipogenesis, lipid metabolism and more. Chem Biol 2:261–266. doi:10.1016/1074-5521(95)90045-4

    Article  CAS  PubMed  Google Scholar 

  8. Young ME (2003) Circadian rhythms in cardiac gene expression. Curr Hypertens Rep 5:445–453. doi:10.1007/s11906-003-0051-8

    Article  PubMed  Google Scholar 

  9. Dreyer C, Krey G et al (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68:879–887. doi:10.1016/0092-8674(92)90031-7

    Article  CAS  PubMed  Google Scholar 

  10. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–649. doi:10.1038/347645a0

    Article  CAS  PubMed  Google Scholar 

  11. Braissant O, Foufelle F et al (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137:354–366. doi:10.1210/en.137.1.354

    Article  CAS  PubMed  Google Scholar 

  12. Schoonjans K, Watanabe M et al (1995) Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. J Biol Chem 270:19269–19276. doi:10.1074/jbc.270.33.19269

    Article  CAS  PubMed  Google Scholar 

  13. Tontonoz P, Hu E et al (1994) Stimulation of adiponegenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79:1147–1156. doi:10.1016/0092-8674(94)90006-X

    Article  CAS  PubMed  Google Scholar 

  14. Brandt JM, Djouadi F et al (1998) Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha. J Biol Chem 273:23786–23792. doi:10.1074/jbc.273.37.23786

    Article  CAS  PubMed  Google Scholar 

  15. Gulick T, Cresci S et al (1994) The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci USA 91:11012–11016. doi:10.1073/pnas.91.23.11012

    Article  CAS  PubMed  Google Scholar 

  16. Mandard S, Muller M et al (2004) Peroxisome proliferator-activated receptor-α target genes. Cell Mol Sci 61:393–416

    Article  CAS  Google Scholar 

  17. Mascaro C, Acosta E et al (1998) Control of human muscle-type carnitine palmitoyltransferase I gene transcription by peroxisome proliferator-activated receptor. J Biol Chem 273:8560–8563. doi:10.1074/jbc.273.15.8560

    Article  CAS  PubMed  Google Scholar 

  18. Yu GS, Lu YC et al (1998) Co-regulation of tissue-specific alternative human carnitine palmitoyltransferase I beta gene promoters by fatty acid enzyme substrate. J Biol Chem 273:32901–32909. doi:10.1074/jbc.273.49.32901

    Article  CAS  PubMed  Google Scholar 

  19. Aoyama T, Peters J et al (1988) Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 273:5678–5684. doi:10.1074/jbc.273.10.5678

    Article  Google Scholar 

  20. Lemberger T, Desvergne B et al (1996) Peroxisome proliferator-activated receptors: a nuclear receptor signalling pathway in lipid physiology. Annu Rev Cell Biol 12:335–363. doi:10.1146/annurev.cellbio.12.1.335

    Article  CAS  Google Scholar 

  21. Brunmair B, Lest A et al (2004) Fenofibrate impairs rat mitochondrial function by inhibition of respiratory complex I. J Pharmacol Exp Ther 311:109–114. doi:10.1124/jpet.104.068312

    Article  CAS  PubMed  Google Scholar 

  22. Keller BJ, Marsman DS et al (1992) Several nongenotoxic carcinogens uncouple oxidative phosphorylation. Biochim Biophys Acta 1102:237–244. doi:10.1016/0005-2728(92)90105-B

    Article  CAS  PubMed  Google Scholar 

  23. Scatena R, Bottoni P et al (2004) Mitochondrial respiratory chain dysfunction, a non-receptor-mediated effect of synthetic PPAR-ligands: biochemical and pharmacological implications. Biochem Biophys Res Commun 319:967–973. doi:10.1016/j.bbrc.2004.05.072

    Article  CAS  PubMed  Google Scholar 

  24. Zungu M, Felix R et al (2006) Wy-14, 643 and fenofibrate inhibit mitochondrial respiration in isolated rat cardiac mitochondria. Mitochondrion 6:315–322. doi:10.1016/j.mito.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  25. Stavinoha MA, Rayspellicy JW et al (2004) Diurnal variations in the responsiveness of cardiac and skeletal muscle to fatty acids. Am J Physiol Endocrinol Metab 287:E878–E887. doi:10.1152/ajpendo.00189.2004

    Article  CAS  PubMed  Google Scholar 

  26. Murray AJ, Panagia M et al (2005) Plasma free fatty acids and peroxisome proliferator-activated receptor alpha in the control of myocardial uncoupling protein levels. Diabetes 54:3496–3502. doi:10.2337/diabetes.54.12.3496

    Article  CAS  PubMed  Google Scholar 

  27. Bojes HK, Sausen PJ et al (1996) Paradoxical increase in peroxisomal cyanide-insensitive respiration following dietary exposure to Wy-14, 643 in the perfused liver. Toxicol Appl Pharmacol 137:202–209. doi:10.1006/taap.1996.0073

    Article  CAS  PubMed  Google Scholar 

  28. Hawkins JM, Jones WE et al (1987) The effect of peroxisome proliferators on microsomal, peroxisomal, and mitochondrial enzyme activities in the liver and kidney. Drug Metab Dispos 18:441–515

    CAS  Google Scholar 

  29. Sordahl LA, Besch HR et al (1971) Enzymatic aspects of the cardiac muscle cell: mitochondria, sarcoplasmic reticulum and noncovalent cation active transport system. Methods Achiev Exp Pathol 5:287–346

    CAS  PubMed  Google Scholar 

  30. Essop MF, Razeghi P et al (2004) Hypoxia induced decrease of UCP3 gene expression in rat heart parallels metabolic gene switching but fails to affect mitochondrial respiratory coupling. Biochem Biophys Res Commun 314:561–564. doi:10.1016/j.bbrc.2003.12.121

    Article  CAS  PubMed  Google Scholar 

  31. Babsky A, Doliba N et al (2001) Na+ effects on mitochondrial respiration and oxidative phosphorylation in diabetic hearts. Exp Biol Med 226:543–551

    CAS  Google Scholar 

  32. Estabrook R (1967) Mitochondrial respiratory control and the polarographic measurement of ADP/O ratios. Methods Enzymol 10:41–47. doi:10.1016/0076-6879(67)10010-4

    Article  CAS  Google Scholar 

  33. Lowry OH, Rosenbrough N et al (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  34. Teshima Y, Asao M et al (2003) Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93:192–200. doi:10.1161/01.RES.0000085581.60197.4D

    Article  CAS  PubMed  Google Scholar 

  35. Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med 226:78–84

    CAS  Google Scholar 

  36. Lei B, Lionetti V et al (2004) Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J Mol Cell Cardiol 36:567–576. doi:10.1016/j.yjmcc.2004.02.004

    Article  CAS  PubMed  Google Scholar 

  37. Keller BJ, Bradford BU et al (1993) The nongenotoxic hepatocarcinogen Wy-14, 643 is an uncoupler of oxidative phosphorylation. Toxicol Appl Pharmacol 119:52–58. doi:10.1006/taap.1993.1043

    Article  CAS  PubMed  Google Scholar 

  38. Marsman DS, Cattley RC et al (1988) Relationship of hepatic peroxisome proliferation and replicative DNA synthesis to the hepatocarcinogenicity of the peroxisome proliferators di(2-ethylhexyl)phthalate and [4-chloro-6-(2, 3-xylidino)-2-pyrimidinylthio]acetic acid (Wy-14, 643) in rats. Cancer Res 48:6739–6744

    CAS  PubMed  Google Scholar 

  39. Finck BN, Lehman JJ et al (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130

    CAS  PubMed  Google Scholar 

  40. Young ME, Laws FA et al (2001) Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem 276:44390–44395. doi:10.1074/jbc.M103826200

    Article  CAS  PubMed  Google Scholar 

  41. Zhou S, Wallace KB (1999) The effect of peroxisome proliferators on mitochondrial bioenergetics. Toxicol Sci 48:82–89. doi:10.1093/toxsci/48.1.82

    Article  CAS  PubMed  Google Scholar 

  42. Sohal RS, Toroser D et al (2008) Age-related decrease in expression of mitochondrial DNA encoded subunits of cytochrome c oxidase in Drosophila melanogaster. Mech Ageing Dev 129:558–561. doi:10.1016/j.mad.2008.04.006

    Article  CAS  PubMed  Google Scholar 

  43. Poyton RO, McEwen JE (1996) Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 65:563–607. doi:10.1146/annurev.bi.65.070196.003023

    Article  CAS  PubMed  Google Scholar 

  44. Villani G, Attardi G (2000) In vivo control of respiration by cytochrome c oxidase in human cells. Free Radic Biol Med 29:202–210. doi:10.1016/S0891-5849(00)00303-8

    Article  CAS  PubMed  Google Scholar 

  45. Saddik M, Lopaschuk GD (1991) Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 266:8162–8170

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Noel Markgraaff for his technical assistance. This work was supported by an NIH Grant No. 7 R03-TW007344-02 (to W.C. Stanley and M.F. Essop), the South African Medical Research Council and the South African National Research Foundation (to M.F. Essop).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Faadiel Essop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zungu, M., Young, M.E., Stanley, W.C. et al. Chronic treatment with the peroxisome proliferator-activated receptor α agonist Wy-14,643 attenuates myocardial respiratory capacity and contractile function. Mol Cell Biochem 330, 55–62 (2009). https://doi.org/10.1007/s11010-009-0100-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0100-y

Keywords

Navigation