Skip to main content
Log in

Epigenetic regulation of cardiac muscle-specific genes in H9c2 cells by Interleukin-18 and histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Interleukin-18 (IL-18) elicited a robust hypertrophy response in H9c2 cardiomyocytes as judged by their accelerated rates of protein synthesis and increased cell size. Evidently, IL-18 treatment also induced a cardiac hypertrophy-specific program of gene expression in H9c2 cardiomyocytes since they elicited enhanced expression of atrial naturetic factor (ANF), desmin, and skeletal α-actin genes accompanied by a canonical switch in the transcription of α- and β-myosin heavy chain (MyHC) genes. Co-treatment of H9c2 cells with m-carboxycinnamic acid bis-hydroxamide (CBHA), an inhibitor of histone deacetylases, significantly blocked both morphological and molecular manifestations of IL-18-induced cardiac hypertrophy in vitro. IL-18 treatment led to activation of phosphoinositide-3-kinase and phosphorylated Akt/protein kinase B, while CBHA blunted this pathway via inducing the expression of its upstream regulator, PTEN (phosphatase and tensin homolog). The architecture of bulk chromatin of H9c2 cells exposed to IL-18 and/or CBHA was significantly altered as judged by the extent of covalent modifications of its constituent histones. The chromatin immuno-precipitation (ChIP) assays revealed that IL-18-induced specific epigenetic changes in the chromatin of ANF, desmin, skeletal α-actin, and MyHC genes that were largely neutralized by CBHA. We demonstrate for the first time that ‘histone code’ of the entire ∼50 kb genomic DNA encoding the α- and β-MyHC genes and the intergenic DNA that generates anti-β-MyHC RNA was uniquely modulated by pro- and anti-hypertrophy signals of IL-18 and CBHA, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morel JC, Park CC, Kumar P, Koch AE (2001) Interleukin-18 induces rheumatoid arthritis synovial fibroblast CXC chemokine production through NFkappaB activation. Lab Invest 81:1371–1383

    PubMed  CAS  Google Scholar 

  2. Gracie JA, Forsey RJ, Chan WL, Gilmour A, Leung BP, Greer MR, Kennedy K, Carter R, Wei XQ, Xu D, Field M, Foulis A, Liew FY, McInnes IB (1999) A proinflammatory role for IL-18 in rheumatoid arthritis. J Clin Invest 104:1393–1401

    Article  PubMed  CAS  Google Scholar 

  3. Dinarello CA, Fantuzzi G (2003) Interleukin-18 and host defense against infection. J Infect Dis 187:S370–384

    Article  PubMed  CAS  Google Scholar 

  4. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H (2001) Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 19:423–474

    Article  PubMed  CAS  Google Scholar 

  5. Gerdes N, Sukhova GK, Libby P, Reynolds RS, Young JL, Schonbeck U (2002) Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. J Exp Med 195:245–257

    Article  PubMed  CAS  Google Scholar 

  6. Mallat Z, Henry P, Fressonnet R, Alouani S, Scoazec A, Beaufils P, Chvatchko Y, Tedgui A (2002) Increased plasma concentrations of interleukin-18 in acute coronary syndromes. Heart 88:467–469

    Article  PubMed  CAS  Google Scholar 

  7. Naito Y, Tsujino T, Fujioka Y, Ohyanagi M, Okamura H, Iwasaki T (2002) Increased circulating interleukin-18 in patients with congestive heart failure. Heart 88:296–297

    Article  PubMed  CAS  Google Scholar 

  8. Chandrasekar B, Mummidi S, Claycomb WC, Mestril R, Nemer M (2005) Interleukin-18 is a pro-hypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes. J Biol Chem 280: 4553–4567

    Article  PubMed  CAS  Google Scholar 

  9. Woldbaek PR, Sande JB, Stromme TA, Lunde PK, Djurovic S, Lyberg T, Christensen G, Tonnessen T (2005) Daily administration of interleukin-18 causes myocardial dysfunction in healthy mice. Am J Physiol Heart Circ Physiol 289:H708–H714

    Article  PubMed  CAS  Google Scholar 

  10. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  PubMed  CAS  Google Scholar 

  11. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65: 45–79

    Article  PubMed  CAS  Google Scholar 

  12. McKinsey TA, Olson EN (2004) Dual roles of histone deacetylases in the control of cardiac growth. Novartis Found Symp 259:132–141; discussion 141–145, 163–169

    Google Scholar 

  13. Backs J, Olson EN (2006) Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98:15–24

    Article  PubMed  CAS  Google Scholar 

  14. Santos-Rosa H, Caldas C (2005) Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer 41:2381–2402

    Article  PubMed  CAS  Google Scholar 

  15. Langst G, Becker PB (2004) Nucleosome remodeling: one mechanism, many phenomena? Biochim Biophys Acta 1677:58–63

    PubMed  CAS  Google Scholar 

  16. Imbalzano AN, Xiao H (2004) Functional properties of ATP-dependent chromatin remodeling enzymes. Adv Protein Chem 67:157–179

    Article  PubMed  CAS  Google Scholar 

  17. de la Cruz X, Lois S, Sanchez-Molina S, Martinez-Balbas MA (2005) Do protein motifs read the histone code? Bioessays 27:164–175

    Article  CAS  Google Scholar 

  18. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  Google Scholar 

  19. Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21:1790–1802

    Article  PubMed  CAS  Google Scholar 

  20. Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN, Hill JA (2006) Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 113:2579–2588

    Article  PubMed  CAS  Google Scholar 

  21. Kook H, Lepore JJ, Gitler AD, Lu MM, Wing-Man Yung W, Mackay J, Zhou R, Ferrari V, Gruber P, Epstein JA (2003) Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest 112:863–871

    PubMed  CAS  Google Scholar 

  22. Abraham WT, Gilbert EM, Lowes BD, Minobe WA, Larrabee P, Roden RL, Dutcher D, Sederberg J, Lindenfeld JA, Wolfel EE, Shakar SF, Ferguson D, Volkman K, Linseman JV, Quaife RA, Robertson AD, Bristow MR (2002) Coordinate changes in Myosin heavy chain isoform gene expression are selectively associated with alterations in dilated cardiomyopathy phenotype. Mol Med 8:750–760

    PubMed  CAS  Google Scholar 

  23. Deng X, Yellaturu C, Cagen L, Wilcox HG, Park EA, Raghow R, Elam MB (2007) Expression of the rat sterol regulatory element-binding protein-1c gene in response to insulin is mediated by increased transactivating capacity of specificity protein 1 (Sp1). J Biol Chem 282:17517–17529

    Article  PubMed  CAS  Google Scholar 

  24. Majumdar G, Harrington A, Hungerford J, Martinez-Hernandez A, Gerling IC, Raghow R, Solomon S (2006) Insulin dynamically regulates calmodulin gene expression by sequential o-glycosylation and phosphorylation of sp1 and its subcellular compartmentalization in liver cells. J Biol Chem 281:3642–3650

    Article  PubMed  CAS  Google Scholar 

  25. Bookout AL, Mangelsdorf DJ (2003) Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl Recept Signal 1:e012

    Article  PubMed  CAS  Google Scholar 

  26. Richon VM, Zhou X, Secrist JP, Cordon-Cardo C, Kelly WK, Drobnjak M, Marks PA (2004) Histone deacetylase inhibitors: assays to assess effectiveness in vitro and in vivo. Methods Enzymol 376:199–205

    PubMed  CAS  Google Scholar 

  27. Cagen LM, Deng X, Wilcox HG, Park EA, Raghow R, Elam MB (2005) Insulin activates the rat sterol-regulatory-element-binding protein 1c (SREBP-1c) promoter through the combinatorial actions of SREBP, LXR, Sp-1 and NF-Y cis-acting elements. Biochem J 385:207–216

    Article  PubMed  CAS  Google Scholar 

  28. Chandrasekar B, Mummidi S, Valente AJ, Patel DN, Bailey SR, Freeman GL, Hatano M, Tokuhisa T, Jensen LE (2005) The pro-atherogenic cytokine interleukin-18 induces CXCL16 expression in rat aortic smooth muscle cells via MyD88, interleukin-1 receptor-associated kinase, tumor necrosis factor receptor-associated factor 6, c-Src, phosphatidylinositol 3-kinase, Akt, c-Jun N-terminal kinase, and activator protein-1 signaling. J Biol Chem. 280: 26263–26277

    Article  PubMed  CAS  Google Scholar 

  29. Glaser KB, Li J, Pease LJ, Staver MJ, Marcotte PA, Guo J, Frey RR, Garland RB, Heyman HR, Wada CK, Vasudevan A, Michaelides MR, Davidsen SK, Curtin ML (2004) Differential protein acetylation induced by novel histone deacetylase inhibitors. Biochem Biophys Res Commun 325:683–690

    Article  PubMed  CAS  Google Scholar 

  30. Haddad F, Bodell PW, Qin AX, Giger JM, Baldwin KM (2003) Role of antisense RNA in coordinating cardiac myosin heavy chain gene switching. J Biol Chem 278:37132–37138

    Article  PubMed  CAS  Google Scholar 

  31. Pan L, Lu J, Wang X, Han L, Zhang Y, Han S, Huang B (2007) Histone deacetylase inhibitor trichostatin a potentiates doxorubicin-induced apoptosis by up-regulating PTEN expression. Cancer 109:1676–88

    Article  PubMed  CAS  Google Scholar 

  32. Kaneda R, Ueno S, Yamashita Y, Choi YL, Koinuma K, Takada S, Wada T, Shimada K and Mano H (2005) Genome-wide screening for target regions of histone deacetylases in cardiomyocytes. Circ Res 97: 210–218

    Article  PubMed  CAS  Google Scholar 

  33. Brush MH, Guardiola A, Connor JH, Yao TP, Shenolikar S (2004) Deactylase inhibitors disrupt cellular complexes containing protein phosphatases and deacetylases. J Biol Chem 279:7685–7691

    Article  PubMed  CAS  Google Scholar 

  34. Chen CS, Weng SC, Tseng PH, Lin HP (2005) Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J Biol Chem 280:38879–38887

    Article  PubMed  CAS  Google Scholar 

  35. Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92:1210–1216

    Article  PubMed  CAS  Google Scholar 

  36. Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3:224–9

    Article  PubMed  CAS  Google Scholar 

  37. Kouzarides T (2002) Histone methylation in transcriptional control. Curr Opin Genet Dev. 12:198–209

    Article  PubMed  CAS  Google Scholar 

  38. Sims RJ III, Nishioka K, Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. Trends Genet 19:629–639

    Article  PubMed  CAS  Google Scholar 

  39. Vakoc CR, Mandat SA, Olenchock BA, Blobel GA (2005) Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell 19:381–391

    Article  PubMed  CAS  Google Scholar 

  40. Miao F, Natarajan R (2005) Mapping global histone methylation patterns in the coding regions of human genes. Mol Cell Biol 25:4650–4661

    Article  PubMed  CAS  Google Scholar 

  41. Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8:983–994

    Article  PubMed  CAS  Google Scholar 

  42. Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13:324–331

    Article  PubMed  CAS  Google Scholar 

  43. Klose RJ, Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8:307–318

    Article  PubMed  CAS  Google Scholar 

  44. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  45. Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8:284–295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The studies reported here were supported by a Merit Review grant (RR) and a Research Enhancement Award Program grant (GM) from the Department of Veterans Affairs (DVA). RR is a Senior Research Career Scientist of the DVA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gipsy Majumdar.

Additional information

Gipsy Majumdar and I. Maria Johnson contributed equally to this work and may be considered first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumdar, G., Johnson, I.M., Kale, S. et al. Epigenetic regulation of cardiac muscle-specific genes in H9c2 cells by Interleukin-18 and histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide. Mol Cell Biochem 312, 47–60 (2008). https://doi.org/10.1007/s11010-008-9720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9720-x

Keywords

Navigation