Skip to main content
Log in

Estrogen delays the progression of salt-induced cardiac hypertrophy by influencing the renin-angiotensin system in heterozygous proANP gene-disrupted mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Left ventricular hypertrophy is considered an independent risk factor for cardiac morbidity and mortality, and many studies have shown that women have a lower incidence of left ventricular hypertrophy even after correcting for numerous risk factors. This cardio-protective effect seen in women has been attributed to estrogen, which likely modulates specific growth-promoting systems such as the renin-angiotensin system, and in turn may lead to the prevention of left ventricular hypertrophy. Furthermore, the underlying mechanisms responsible are poorly understood. The aim of the present study was to examine the effect of estrogen in relation to its impact on the development of left ventricular hypertrophy through its interaction with the renin-angiotensin system by using the proANP heterozygous (ANP +/−) mouse as a model of salt-sensitive cardiac hypertrophy. Male, female ANP +/− mice and also ovariectomized female ANP +/− mice treated with oil or estrogen, were fed either a normal or high-salt diet. All four groups exhibited a general suppression of the renin-angiotensin system under the high salt challenge. However, after the 5-week treatment period, marked left ventricular hypertrophy was noted only in the male and oil-injected ovariectomized female ANP +/− mice treated with high salt. Collectively, we provide direct evidence that the differences in cardiac hypertrophy between genders in ANP +/− mice is attributed to estrogen. Furthermore, estrogen may play a key role in slowing down the progression of salt-induced left ventricular hypertrophy in ANP +/− mice, in part, independent of the classical systemic renin-angiotensin system and possibly through other pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grady D, Rubin SM, Petitti DB et al (1992) Hormone therapy to prevent disease and prolong life in postmenopausal women. Ann Intern Med 117:1016–1037

    PubMed  CAS  Google Scholar 

  2. Gardin JM, Wagenknecht LE, Anton-Culver H et al (1995) Relationship of cardiovascular risk factors to echocardiographic left ventricular mass in healthy young black and white adult men and women. The CARDIA study. Coronary artery risk development in young adults. Circulation 92:380–387

    PubMed  CAS  Google Scholar 

  3. Mendelsohn ME, Karas RH (1994) Estrogen and the blood vessel wall. Curr Opin Cardiol 9:619–626

    Article  PubMed  CAS  Google Scholar 

  4. Kannel WB, Wilson PW (1995) Risk factors that attenuate the female coronary disease advantage. Arch Intern Med 155:57–61

    Article  PubMed  CAS  Google Scholar 

  5. Babiker FA, de Windt LJ, van Eickels M et al (2002) Estrogenic hormone action in the heart: regulatory network and function. Cardiovasc Res 53:709–719

    Article  PubMed  CAS  Google Scholar 

  6. Levy D, Garrison RJ, Savage DD et al (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566

    Article  PubMed  CAS  Google Scholar 

  7. Grohe C, Kahlert S, Lobbert K et al (1997) Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett 416:107–112

    Article  PubMed  CAS  Google Scholar 

  8. Levy BI (2005) How to explain the differences between renin angiotensin system modulators. Am J Hypertens 18:134S–141S

    Article  PubMed  CAS  Google Scholar 

  9. Wollert KC, Drexler H (1999) The renin-angiotensin system and experimental heart failure. Cardiovasc Res 43:838–849

    Article  PubMed  CAS  Google Scholar 

  10. Fischer M, Baessler A, Schunkert H (2002) Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc Res 53:672–677

    Article  PubMed  CAS  Google Scholar 

  11. Dean SA, Tan J, O’Brien ER et al (2005) 17Beta-estradiol downregulates tissue angiotensin-converting enzyme and ANG II type 1 receptor in female rats. Am J Physiol Regul Integr Comp Physiol 288:R759–R766

    PubMed  CAS  Google Scholar 

  12. John SW, Krege JH, Oliver PM et al (1995) Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267:679–681

    Article  PubMed  CAS  Google Scholar 

  13. Sangaralingham SJ, Tse MY, Pang SC (2004) Estrogen is involved in attenuating cardiac hypertrophy in female ANP+/− treated with high salt. J Hypertens Suppl 22, S200. (Abstract)

    Google Scholar 

  14. Rutledge DR, Sun Y, Ross EA (1995) Polymorphisms within the atrial natriuretic peptide gene in essential hypertension. J Hypertens 13:953–955

    Article  PubMed  CAS  Google Scholar 

  15. Gruchala M, Ciecwierz D, Wasag B et al (2003) Association of the ScaI atrial natriuretic peptide gene polymorphism with nonfatal myocardial infarction and extent of coronary artery disease. Am Heart J 145:125–131

    Article  PubMed  CAS  Google Scholar 

  16. Franco V, Chen YF, Oparil S et al (2004) Atrial natriuretic peptide dose-dependently inhibits pressure overload-induced cardiac remodeling. Hypertension 44:746–750

    Article  PubMed  CAS  Google Scholar 

  17. Tse MY, Watson JD, Sarda IR et al (2001) Expression of B-type natriuretic peptide in atrial natriuretic peptide gene disrupted mice. Mol Cell Biochem 219:99–105

    Article  PubMed  CAS  Google Scholar 

  18. Sangaralingham SJ, Pak BJ, Tse MY et al (2003) Expression of the translational repressor NAT1 in experimental models of cardiac hypertrophy. Mol Cell Biochem 245:183–190

    Article  PubMed  CAS  Google Scholar 

  19. Klotz S, Hay I, Zhang G et al (2006) Development of heart failure in chronic hypertensive Dahl rats: focus on heart failure with preserved ejection fraction. Hypertension 47:901–911

    Article  PubMed  CAS  Google Scholar 

  20. Zhao X, White R, Van Huysse J et al (2000) Cardiac hypertrophy and cardiac renin-angiotensin system in Dahl rats on high salt intake. J Hypertens 18:1319–1326

    Article  PubMed  CAS  Google Scholar 

  21. Izzo JL Jr, Gradman AH (2004) Mechanisms and management of hypertensive heart disease: from left ventricular hypertrophy to heart failure. Med Clin North Am 88:1257–1271

    Article  PubMed  Google Scholar 

  22. Garavaglia GE, Messerli FH, Schmieder RE et al (1989) Sex differences in cardiac adaptation to essential hypertension. Eur Heart J 10:1110–1114

    PubMed  CAS  Google Scholar 

  23. Farhat MY, Chen MF, Bhatti T et al (1993) Protection by oestradiol against the development of cardiovascular changes associated with monocrotaline pulmonary hypertension in rats. Br J Pharmacol 110:719–723

    PubMed  CAS  Google Scholar 

  24. Sealey JE, Cholst I, Glorioso N et al (1987) Sequential changes in plasma luteinizing hormone and plasma prorenin during the menstrual cycle. J Clin Endocrinol Metab 65:1–5

    Article  PubMed  CAS  Google Scholar 

  25. Schmieder RE, Langenfeld MRW, Friedrich A et al (1996) Angiotensin II related to sodium excretion modulates left ventricular structure in human essential hypertension. Circulation 94:1304–1309

    PubMed  CAS  Google Scholar 

  26. Chen YF, Naftilan AJ, Oparil S (1992) Androgen-dependent angiotensinogen and renin messenger RNA expression in hypertensive rats. Hypertension 19:456–463

    PubMed  CAS  Google Scholar 

  27. Bachmann J, Wagner J, Haufe C et al (1993) Modulation of blood pressure and the renin-angiotensin system in transgenic and spontaneously hypertensive rats afer ovariectomy. J Hypertens Suppl 11:S226–S227

    Article  PubMed  CAS  Google Scholar 

  28. Gordon MS, Chin WW, Shupnik MA (1992) Regulation of angiotensinogen gene expression by estrogen. J Hypertens 10:361–366

    Article  PubMed  CAS  Google Scholar 

  29. Griendling KK, Murphy TJ, Alexander RW (1993) Molecular biology of the renin-angiotensin system. Circulation 87:1816–1828

    PubMed  CAS  Google Scholar 

  30. van Eickels M, Grohe C, Cleutjens JP et al (2001) 17Beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 104:1419–1423

    Article  PubMed  Google Scholar 

  31. Kurdi M, De Mello WC, Booz GW (2005) Working outside the system: an update on the unconventional behavior of the renin-angiotensin system components. Int J Biochem Cell Biol 37:1357–1367

    Article  PubMed  CAS  Google Scholar 

  32. Brosnihan KB, Weddle D, Anthony MS et al (1997) Effects of chronic hormone replacement on the renin-angiotensin system in cynomolgus monkeys. J Hypertens 15:719–726

    Article  PubMed  CAS  Google Scholar 

  33. Li P, Chappell MC, Ferrario CM et al (1997) Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension 29:394–400

    PubMed  CAS  Google Scholar 

  34. Brosnihan KB, Li P, Ferrario CM (1996) Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension 27:523–528

    PubMed  CAS  Google Scholar 

  35. Antikainen R, Grodzicki T, Palmer AJ et al (2003) The determinants of left ventricular hypertrophy defined by Sokolow-Lyon criteria in untreated hypertensive patients. J Hum Hypertens 17:159–164

    Article  PubMed  CAS  Google Scholar 

  36. Post WS, Hill MN, Dennison CR et al (2003) High prevalence of target organ damage in young, African American inner-city men with hypertension. J Clin Hypertens (Greenwich) 5:24–30

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. K.E. Wynne-Edwards and Mr. Y. Kiparissis from the Department of Biology at Queen’s University for performing the estrogen immunoassay for us. We would also like to thank Dr. E. Angelis for providing valuable comments and reviewing this manuscript. Financial support of this research was provided by a grant-in-aid from the Heart and Stroke Foundation of Ontario (HSFO #T6140), and the Garfield Kelly Cardiovascular Research and Development Fund from the Faculty of Health Sciences at Queen’s University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Pang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangaralingham, S.J., Tse, M.Y. & Pang, S.C. Estrogen delays the progression of salt-induced cardiac hypertrophy by influencing the renin-angiotensin system in heterozygous proANP gene-disrupted mice. Mol Cell Biochem 306, 221–230 (2007). https://doi.org/10.1007/s11010-007-9573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9573-8

Keywords

Navigation