Skip to main content

Advertisement

Log in

The Role of 17β-Estradiol in Myocardial Hypertrophy in Females in the Presence and Absence of Hypertension

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

There are gender-differences in the development of cardiac hypertrophy, which appear to be related, in part, to sex hormones. This report gives an overview of this relationship and reports on original data assessing how varying levels of plasma 17β-estradiol determine relative heart size, in vivo function, in hypertensive versus normotensive rats.

Methods

Female spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were either surgically neutered or sham operated at 21 days of age. A subgroup of neutered females received 17β-estradiol replacement. At 6 months, in vivo heart function was measured, the heart/body weight ratio (mg/g) was assessed as a measure of hypertrophy and correlated with plasma 17β-estradiol.

Results

There was a significant positive relationship between plasma 17β-estradiol and heart/body weight ratio in both WKY (R = 0.509, P = 0.011) and SHR females (R = 0.359, P = 0.032). Interestingly, the slope of this relationship was 2-fold steeper in the WKY females, suggesting a blunted effect in the SHR, whose hearts also had 35 % lower ERβ content. With increasing plasma estradiol levels, WKY females showed improved LV function while SHR females showed impaired LV relaxation.

Conclusions

Plasma estradiol modulates relative heart mass in both normotensive and hypertensive female rats. With any increase in plasma 17β-estradiol, hypertensive females show a blunted response compared with the normotensive females, which may be related to a reduced estrogen receptor expression in the presence of hypertension. In contrast to normotensive females, hypertensive females showed impaired function with increases in plasma 17β-estradiol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Devereux RB, Pickering TG, Alderman MH, et al. Left ventricular hypertrophy in hypertension. Prevalence and relationship to pathophysiologic variables. Hypertension. 1987;9(Suppl II):II53–60.

    CAS  PubMed  Google Scholar 

  2. Zabalgoitia M, Rahman NU, Haley WE, et al. Gender dimorphism in cardiac adaptation to hypertension is unveiled by prior treatment and efficacy. Am J Cardiol. 1996;78:838–40.

    Article  CAS  PubMed  Google Scholar 

  3. Kaplinsky E. Significance of left ventricular hypertrophy in cardiovascular morbidity and mortality. Cardiovasc Drug Ther. 1994;8:549–56.

    Article  Google Scholar 

  4. Levy D, Garrison RJ, Savage DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  PubMed  Google Scholar 

  5. Thrainsdottir IS, Hardarson T, Thorgeirsson G, et al. Survival and trends of occurrence of left ventricular hypertrophy, gender differences, 1967–92: the Reykjavik Study. J Int Med. 2003;253:418–24.

    Article  CAS  Google Scholar 

  6. Wallen WJ, Cserti C, Belanger MP, et al. Gender-differences in myocardial adaptation to afterload in normotensive and hypertensive rats. Hypertension. 2000;36:774–9.

    Article  CAS  PubMed  Google Scholar 

  7. White R, Parker MG. Molecular mechanisms of steroid hormone action. Endo Rel Cancer. 1998;5:1–14.

    Article  CAS  Google Scholar 

  8. Babiker FA, De Windt LJ, van Eickels M, et al. Estrogenic hormone action in the heart: regulatory network and function. Cardiovasc Res. 2002;53:709–19.

    Article  CAS  PubMed  Google Scholar 

  9. Perrot-Applanat M. Estrogen receptors in the cardiovascular system. Steroids. 1996;61:212–5.

    Article  CAS  PubMed  Google Scholar 

  10. Grohé C, Kahlert S, Löbbert K, et al. Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett. 1997;416:107–12.

    Article  PubMed  Google Scholar 

  11. Saunders PTK, Maguire SM, Gaughan J, et al. Expression of oestrogen receptor beta (ERβ) in multiple rat tissues visualised by immunohistochemistry. J Endocrinol. 1997;154:R13–6.

    Article  CAS  PubMed  Google Scholar 

  12. Nordmeyer J, Eder S, Mahmoodzadeh S, et al. Upregulation of myocardial estrogen receptors in human aortic stenosis. Circulation. 2004;110:3270–5.

    Article  CAS  PubMed  Google Scholar 

  13. Wallen WJ, Belanger MP, Wittnich C. Preischemic administration of ribose to delay the onset of irreversible ischemic injury and improve function: studies in normal and hypertrophied hearts. Can J Physiol Pharmacol. 2003;81:40–7.

    Article  CAS  PubMed  Google Scholar 

  14. Clarke K, O’Connor AJ, Willis RJ. Temporal relationship between energy metabolism and myocardial function during ischemia and reperfusion. Am J Physiol. 1987;253:H412–21.

    CAS  PubMed  Google Scholar 

  15. Edwards HE, Burnham WM, Mendonca A, et al. Steroid hormones affect limbic afterdischarge thresholds and kindling rates in adult female rats. Brain Res. 1999;838:136–50.

    Article  CAS  PubMed  Google Scholar 

  16. Bradford MM. A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  17. Freeman ME. The neuroendocrine control of the ovarian cycle of the rat. In: Knobil E, Neill JD, editors. The physiology of reproduction, 2nd ed. New York: Raven Press, Ltd; 1994. p. 613–58.

    Google Scholar 

  18. Swislocki A, Burgie ES, Rodnick KJ. Effects of Ovariectomy on indices of insulin resistance, hypertension, and cardiac energy metabolism in middle-aged spontaneously hypertensive rats (SHR). Horm Metab Res. 2002;34:516–22.

    Article  CAS  PubMed  Google Scholar 

  19. Anderson KP. Sudden death, hypertension, and hypertrophy. J Cardiovasc Pharmacol. 1984;6:S498–503.

    Article  PubMed  Google Scholar 

  20. Messerli FH, Ketelhut R. Left ventricular hypertrophy: an independent risk factor. J Cardiovasc Pharm. 1991;17 Suppl 4:S59–67.

    Article  Google Scholar 

  21. Taylor AH, Al-Azzawi F. Immunolocalisation of oestrogen receptor beta in human tissues. J Mol Endocrinol. 2000;24:145–55.

    Article  CAS  PubMed  Google Scholar 

  22. Pelzer T, Samim A, Neyses L. Estrogen effects in the heart. Mol Cell Biochem. 1996;160/161:307–13.

    Article  CAS  Google Scholar 

  23. Jiang C, Poole-Wilson PA, Sarrel PM, et al. Effect of 17β-oestradiol on contraction, Ca2+ current and intracellular free Ca2+ in guinea-pig isolated cardiac myocytes. Br J Pharmacol. 1992;106:739–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sitzler G, Lenz O, Kitler H, et al. Investigation of the negative inotropic effects of 17β-oestradiol in human isolated myocardial tissues. Br J Pharmacol. 1996;119:43–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Berger F, Borchard U, Hafner D, et al. Effects of 17β-estradiol on action potentials and ionic currents in male rat ventricular myocytes. Naunyn-Schmiedeberg’s Arch Pharmcol. 1997;356:788–96.

    Article  CAS  Google Scholar 

  26. Lee HW, Eghbali-Webb M. Estrogen enhances proliferative capacity of cardiac fibroblasts by estrogen receptor- and mitogen-activated protein kinase-dependent pathways. J Mol Cell Cardiol. 1998;30:1359–68.

    Article  CAS  PubMed  Google Scholar 

  27. Nuedling S, Kahlert S, Loebbert K, et al. Differential effects of 17β-estradiol on mitogen-activated protein kinase pathways in rat cardiomyocytes. FEBS Lett. 1999;454:271–6.

    Article  CAS  PubMed  Google Scholar 

  28. Dworatzek E, Mahmoodzadeh S, Schubert C, et al. Sex differences in exercise-induced physiological myocardial hypertrophy are modulated by oestrogen receptor beta. Cardiovasc Res. 2014;102:418–28.

    Article  CAS  PubMed  Google Scholar 

  29. Raddino R, Poli E, Pelà G, et al. Action of steroid sex hormones on the isolated rabbit heart. Pharmacology. 1989;38:185–90.

    Article  CAS  PubMed  Google Scholar 

  30. Magness RR, Rosenfeld CR. Local and systemic estradiol-17β: effects on uterine and systemic vasodilation. Am J Physiol. 1989;256:E536–42.

    CAS  PubMed  Google Scholar 

  31. Dodds ML, Kargacin ME, Kargacin GJ. Effects of anti-oestrogens and β-estradiol on calcium uptake by cardiac sarcoplasmic reticulum. Br J Pharmacol. 2001;132:1374–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ferreira RG, Worthington A, Huang CC, et al. Sex differences in the prevalence of diastolic dysfunction in cardiac surgical patients. J Card Surg. 2015;30:238–45.

    Article  PubMed  Google Scholar 

  33. Savolainen H, Frösen J, Petrov L, et al. Expression of estrogen receptor sub-types α and β in acute and chronic cardiac allograft vasculopathy. J Heart Lung Transplant. 2001;20:1252–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

W.J. Wallen was supported by the Medical Research Council of Canada/K.M. Hunter Doctoral Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carin Wittnich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wittnich, C., Wallen, J. & Belanger, M. The Role of 17β-Estradiol in Myocardial Hypertrophy in Females in the Presence and Absence of Hypertension. Cardiovasc Drugs Ther 29, 347–353 (2015). https://doi.org/10.1007/s10557-015-6603-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-015-6603-8

Keywords

Navigation