Skip to main content
Log in

NTPDase and 5′-nucleotidase activities in platelets of human pregnants with a normal or high risk for thrombosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The nucleotide degrading enzymes, ectonucleotidases, present on the platelet surface of human pregnant with a normal (without complications) or high risk for thrombosis (hypertension and gestational diabetes) were studied. NTPDase (E.C. 3.6.1.5, CD39) and 5′-nucleotidase (E.C. 3.1.3.5, CD73) activities of four patient groups, non-pregnant (NP, n = 18), pregnant without complications (P, n = 25), pregnant with hypertension (HP, n = 15) and pregnant with gestational diabetes mellitus (GDP, n = 10), were analyzed. Increased NTPDase activities were observed in the groups P (37.0%, S.D. = 2.03 and 34.0%, S.D. = 3.19), HP (40.0%, S.D. = 3.32 and 56.0%, S.D. = 3.25) and GDP (23.0%, S.D. = 2.30 and 42.0%, S.D. = 2.26) in comparison to the control group NP (p < 0.01, S.D. = 1.92 and S.D. = 2.48) when ATP and ADP were used as substrate, respectively. AMP was used as substrate to determine the 5′-nucleotidase activities, which showed to be elevated in the groups P (45.0%, S.D. = 1.73), HP (54.0%, S.D. = 2.64) and GDP (68.0%, S.D. = 1.69) when compared to the control group NP (p < 0.01, S.D. = 1.26). However, no statistically significant differences were observed between the groups P, HP and GDP. As a consequence, the enhanced ATP, ADP and AMP hydrolysis was ascribed to the pregnancy itself, independent of a normal or high risk for thrombosis. The enhanced NTPDase and 5′-nucleotidase activities in platelets suggest that these enzymes are involved in the thromboregulation process in the pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Knijff SCM (ed) (2000) Summary of contraindication to oral contraceptives. Parthenon Publishing Group, New York

    Google Scholar 

  2. Marcus AJ, Broekman MJ, Drosoupoulos JHF et al (2001) Thromboregulation by endothelial cells: significance for occlusive vascular diseases. Arterioscler Thromb Vasc Biol 21:178–182

    PubMed  CAS  Google Scholar 

  3. Marcus AJ, Broekman MJ, Safier LB et al (1982) Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vitro. Biochem Biophys Res Commun 109:130–137

    Article  PubMed  CAS  Google Scholar 

  4. Lockwood CJ (2006) Pregnancy-associated changes in the hemostatic system. Clin Obstet Gynecol 49(4):836–843

    Article  PubMed  Google Scholar 

  5. Toglia M, John G (1996) Venous thromboembolism during pregnancy. N Engl J Med 335:108–114

    Article  PubMed  CAS  Google Scholar 

  6. Bellart J, Gilabert R, Fontecuberta L (1998) Coagulation and fibrinolytic parameters in normal pregnancy and pregnancy complicated by intrauterine growth retardation. Am J Perinatol 15:81–85

    Article  PubMed  CAS  Google Scholar 

  7. O’Riordan MN, Higgins JR (2003) Haemostasis in normal and abnormal pregnancy. Clin Obstet Gynecol 17:385–396

    Google Scholar 

  8. Eichinger S (2004) D-Dimer testing in pregnancy. Pathophysiol Haemost Thromb 33:327–329

    Article  Google Scholar 

  9. Norris LA (2003) Blood coagulation. Best Pract Res Clin Obstet Gynecol 17(3):369–383

    Article  Google Scholar 

  10. Zimmermann H (1999) Nucleotides and CD39: principal modulatory players in hemostasis and thrombus. Nature Med 5:987–988

    Article  PubMed  CAS  Google Scholar 

  11. Kawashima Y, Nagasawa T, Ninomiya H (2000) Contribution of ecto–5′-nucleotidase to the inhibition of platelet aggregation by human endothelial cells. Blood 96:2157–2162

    PubMed  CAS  Google Scholar 

  12. Carr ME (2001) Diabetes Mellitus: a hypercoagulable state. J Diabetes Its Complicat 15:44–54

    Article  CAS  Google Scholar 

  13. Burnstock G, Knight G (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:301–304

    Google Scholar 

  14. Abbracchio MP, Burnstock G (1994) Purinoreceptors-Are there families of P2X and P2Y purinoreceptors. Pharmacol Ther 64(3):445–475

    Article  PubMed  CAS  Google Scholar 

  15. Palmer TM, Stiles GL (1995) Adenosine receptors. Neuropharmacology 34:683–694

    Article  PubMed  CAS  Google Scholar 

  16. Plesner L (1995) Ecto-ATPases: identities and functions. Int Rev Cytol 158:141–214

    Article  PubMed  CAS  Google Scholar 

  17. Sobol AB, Watala C (2000) The role of platelets in diabetes-related vascular complications. Diabetes Res Clin Pract 50:1–16

    Article  PubMed  CAS  Google Scholar 

  18. Marcus AJ, Broekman MJ, Drosoupoulos JHF et al (2001) Inhibition of platelet recruitment by endothelial cell CD39/ecto-ADPase: significance for occlusive vascular diseases. Ital Heart J 2:824–830

    PubMed  CAS  Google Scholar 

  19. Pilla C, Emanuelli T, Frasetto SS et al (1996) ATP diphosphohydrolase activity (apyrase, EC 3.6.1.5) in human blood platelets. Platelets 7:225–230

    CAS  Google Scholar 

  20. Frasetto SS, Schetinger MRC, Schierholt R et al (2000) Brain ischemia alters platelet ATP diphosphohydrolase and 5′-nucleotidase activities in naïve and preconditioned rats. Braz J Med Biol Res 33:1369–1377

    Article  Google Scholar 

  21. Soslau G, McKenzie RJ, Brodsky I et al (1995) Extracellular ATP inhibits agonist-induced mobilization of internal calcium in human platelets. Biochim Biophys Acta 1268:73–80

    Article  PubMed  Google Scholar 

  22. Chen W, Guidotti G (2001) Soluble apyrase release ADP during ATP hydrolysis. Biochem Biophys Res Commun 282:90–95

    Article  PubMed  CAS  Google Scholar 

  23. Lunkes GI, Lunkes D, Stefanello F et al (2003) Enzymes that hydrolyze adenine nucleotides in diabetes and associated pathologies. Thromb Res 2183:1–6

    Google Scholar 

  24. Silva AC, Morsch ALB, Zanin RF et al (2005) Enzymes that hydrolyze adenine nucleotides in chronic renal failure: relationship between hemostatic defects and renal failure severity. Biochim Biophys Acta 1741:282–288

    PubMed  CAS  Google Scholar 

  25. Araújo MC, Morsch A, Zanin R et al (2005) Enzymes that hydrolyze adenine nucleotides in platelets from breast cancer patients. Biochim Biophys Acta 1740:421–426

    Google Scholar 

  26. Leal DBR, Streher CA, Neu TN et al (2005) Characterization of NTPDase (NTPDase 1; ecto-apyrase; ecto-diphosphohydrolase; CD39; EC 3.6.1.5.) activity in human lymphocytes. Biochim Biophys Acta 1721:9–15

    PubMed  CAS  Google Scholar 

  27. Yang HX, Gao XL, Dong Y et al (2005) Analysis of oral glucose tolerance test in pregnant women with abnormal glucose metabolism. CM J 118:995–999

    Google Scholar 

  28. Yang HX, Zhou SM (1993) Clinical Analysis of perinatal outcomes in gestational diabetes mellitus. Clin J Obstet Gynecol 28:139–142

    CAS  Google Scholar 

  29. Koziak K, Sévigny J, Robson SC et al (1999) Analysis of CD39/ATP Diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes. Thromb Haemost 1538:1538–1544

    Google Scholar 

  30. Chan K, Delfert K, Jungner KD (1986) A direct colorimetric assay for the Ca2+ - ATPase activity. Anal Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  31. Bradford MMA (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  32. Falati S, Liu Q, Gross P et al (2003) Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 197(11):1585–1598

    Article  PubMed  CAS  Google Scholar 

  33. Atkinson B, Dwyer K, Enjyoji K et al (2006) Ecto-nucleotidases of the CD39/NTPDase family modulate platelet activation and thrombus formation: Potential as therapeutic targets. Blood Cells Mol Dis 36:217–222

    Article  PubMed  CAS  Google Scholar 

  34. Bremme KA (2003) Haemostatic changes in pregnancy. Best Practice Res Clin Haematol 16(2):153–168

    Article  Google Scholar 

  35. Wallaschofski H, Donné M, Eigenthaler M et al (2001) Prolactin as a novel potent cofactor for platelet aggregation. J Clin Endocrinol Metab 86(12):5912–5919

    Article  PubMed  CAS  Google Scholar 

  36. Wallaschofski H, Kobsar A, Sokolova O et al (2004) Co-activation of platelets by prolactin or leptin-pathophysiological findings and clinical implications. Horm Metab Res 36(1):1–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria R. C. Schetinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leal, C.A.M., Schetinger, M.R.C., Leal, D.B.R. et al. NTPDase and 5′-nucleotidase activities in platelets of human pregnants with a normal or high risk for thrombosis. Mol Cell Biochem 304, 325–330 (2007). https://doi.org/10.1007/s11010-007-9515-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9515-5

Keywords

Navigation