Skip to main content
Log in

Effects of uridine and nucleotides on hemostasis parameters

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Several purinergic receptors have been identified on platelets which are involved in hemostatic and thrombotic processes. The aim of the present study was to investigate the effects of uridine and its nucleotides on platelet aggregation and hemostasis in platelet-rich plasma (PRP) and whole blood. The effects of uridine, UMP, UDP, and UTP at different final concentrations (1 to 1000 µM) on platelet aggregation were studied using an aggregometer. In PRP samples, platelet aggregation was induced by ADP, collagen and epinephrine 3 min after addition of uridine, UMP, UDP, UTP and saline (as a control). All thromboelastogram experiments were performed at 1000 µM final concentrations of uridine and its nucleotides in whole blood. UDP and UTP were also tested in thromboelastogram with PRP. Our results showed that UDP, and especially UTP, inhibited ADP- and collagen-induced aggregation in a concentration-dependent manner. In whole blood thromboelastogram experiments, UDP stimulated clot formation while UTP suppressed clot formation. When thromboelastogram experiments were repeated with PRP, UTP’s inhibitory effect on platelets was confirmed, while UDP’s stimulated clot forming effect disappeared. Collectively, our data showed that UTP inhibited platelet aggregation in a concentration-dependent manner and suppressed clot formation. On the other hand, UDP exhibited distinct effects on whole blood or PRP in thromboelastogram. These data suggest that the difference on effects of UTP and UDP might have arisen from the different receptors that they stimulate and warrant further investigation with regard to their in vivo actions on platelet aggregation and hemostasis.

Highlights

UDP and UTP exhibit different effects on platelet aggregation and hemostasis.

UTP inhibits platelet aggregation and hemostasis both in whole blood and PRP samples.

UDP has distinct effects on hemostasis in whole blood or PRP in thromboelastogram.

The findings suggest the involvement of different receptors stimulated by UDP or UTP in the observed effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davi G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med 357(24):2482–2494. https://doi.org/10.1056/NEJMra071014

    Article  CAS  PubMed  Google Scholar 

  2. WHO-Global hearts initiative. [accessed 2020 September 12]. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

  3. Burnstock G (2017) Purinergic Signalling: therapeutic developments. Front Pharmacol 8:661. https://doi.org/10.3389/fphar.2017.00661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cansev M, Orhan F, Yaylagul EO, Isik E, Turkyilmaz M, Aydin S, Gumus A, Sevinc C, Coskun N, Ulus IH, Wurtman RJ (2015) Evidence for the existence of pyrimidinergic transmission in rat brain. Neuropharmacology 91:77–86. https://doi.org/10.1016/j.neuropharm

    Article  CAS  PubMed  Google Scholar 

  5. Kügelgen Iv, Hoffmann K (2016) Pharmacology and structure of P2Y receptors. Neuropharmacology 104:50–61. https://doi.org/10.1016/j.neuropharm.2015.10.030

    Article  CAS  Google Scholar 

  6. North RA (2016) P2X receptors. Philos Trans R Soc Lond B Biol Sci 371:20150427. https://doi.org/10.1098/rstb.2015.0427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K (2018) Pharmacology of Adenosine Receptors: the state of the art. Physiol Rev 98:1591–1625. https://doi.org/10.1152/physrev.00049.2017

    Article  CAS  PubMed  Google Scholar 

  8. Murugappan S, Kunapuli SP (2006) The role of ADP receptors in platelet function. Front Biosci 11:1977–1986. https://doi.org/10.2741/1939

    Article  CAS  Google Scholar 

  9. Burnstock G (2015) Blood cells: an historical account of the roles of purinergic signaling. Purinergic Signal 11:411–434. https://doi.org/10.1007/s11302-015-9462-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gachet C, Hechler B (2020) Platelet purinergic receptors in thrombosis and inflammation. Hämostaseologie 40:145–152. https://doi.org/10.1055/a-1113-0711

    Article  PubMed  Google Scholar 

  11. Koupenova M, Ravid K (2018) Biology of platelet purinergic receptors and implications for platelet heterogeneity. Front Pharmacol 9:37. https://doi.org/10.3389/fphar.2018.00037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johnston-Cox HA, Ravid K (2011) Adenosine and blood platelets. Purinergic Signal 7:357–365. https://doi.org/10.1007/s11302-011-9220-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harden TK, Sesma JI, Fricks IP, Lazarowski ER (2010) Signalling and pharmacological properties of the P2Y14 receptor. Acta Physiol (Oxf) 199(2):149–160. https://doi.org/10.1111/j.1748-1716.2010.02116.x

    Article  CAS  PubMed  Google Scholar 

  14. Dovlatova N, Wijeyeratne YD, Fox SC, Manolopoulos P, Johnson AJ, White AE, Latif ML, Ralevic V, Heptinstall S (2008) Detection of P2Y14 protein in platelets and investigation of the role of P2Y14 in platelet function in comparison with the EP3 receptor. Thromb Haemost 100:261–270 PMID: 18690346

    Article  CAS  PubMed  Google Scholar 

  15. Kauffenstein G, Hechler B, Cazenave J-P, Gachet C (2004) Adenine triphosphate nucleotides are antagonists at the P2Y12 receptor. J Thromb Haemost 2:1980–1988. https://doi.org/10.1111/j.1538-7836.2004.00926.x

    Article  CAS  PubMed  Google Scholar 

  16. Aslam M, Sedding D, Koshty A, Santoso S, Schulz R, Hamm C, Gündüz D (2013) Nucleoside triphosphates inhibit ADP, collagen, and epinephrine-induced platelet aggregation: role of P2Y1 and P2Y12 receptors. Thromb Res 132:548–557. https://doi.org/10.1016/j.thromres.2013.08.021

    Article  CAS  PubMed  Google Scholar 

  17. Chang H, Yanachkov IB, Michelson AD, Li Y, Barnard MR, Wright GE, Frelinger AL (2010) Agonist and antagonist effects of diadenosine tetraphosphate, a platelet dense granule constituent, on platelet P2Y1, P2Y12 and P2X1receptors. Thromb Res 125:159–165. https://doi.org/10.1016/j.thromres.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  18. Högberg C, Gidlöf O, Deflorian F, Jacobson KA, Abdelrahman A, Miüller CE, Olde B, Erlinge D (2012) Farnesyl pyrophosphate is an endogenous antagonist to ADP stimulated P2Y12 receptor-mediated platelet aggregation. Thromb Haemost 108(1):119–132. https://doi.org/10.1160/TH11-10-0749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Traut TW (1994) Physiological concentrations of purine and pyrimidines. Mol Cell Biochem 140:1–22. https://doi.org/10.1007/BF00928361

    Article  CAS  PubMed  Google Scholar 

  20. Wurtman RJ, Regan M, Ulus I, Yu L (2000) Effect of oral CDP-choline on plasma choline and uridine levels in humans. Biochem Pharmacol 60(7):989–992. https://doi.org/10.1016/s0006-2952(00)00436-6

    Article  CAS  PubMed  Google Scholar 

  21. Goetz U, Da Prada M, Pletscher A (1971) Adenine-, guanine- and uridine-5’-phosphonucleotides in blood platelets and storage organelles of various species. J Pharmacol Exp Ther 178:210–215 PMID: 5087398

    CAS  PubMed  Google Scholar 

  22. Löfgren L, Pehrsson S, Hagglund G, Tjellström H, Nylander S (2018) Accurate measurement of endogenous adenosine in human blood. PLoS ONE 13(10):e0205707. https://doi.org/10.1371/journal.pone.0205707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Costa-Filho RC, Bozza FA (2017) Platelets: an outlook from biology through evidence-based achievements in critical care. Ann Transl Med 5(22):449. https://doi.org/10.21037/atm.2017.11.04

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wurtman RJ, Cansev M, Sakamoto T, Ulus IH (2009) Use of phosphatide precursors to promote synaptogenesis. Annu Rev Nutr 29:59–87. https://doi.org/10.1146/annurev-nutr-080508-141059

    Article  CAS  PubMed  Google Scholar 

  25. Valeri CR, Srey R, Tilahun D, Ragno G (2004) In vitro effects of poly-N-acetyl glucosamine on the activation of platelets in platelet-rich plasma with and without red blood cells. J Trauma 57(1 Suppl):S22–S25. https://doi.org/10.1097/01.ta.0000136744.12440.47

    Article  CAS  PubMed  Google Scholar 

  26. Gosselin RC, Estacio EE, Song JY, Dwyre DM (2016) Verifying the performance characteristics of the TEG5000 thromboelastogram in the clinical laboratory. Int J Lab Hematol 38(2):183–192. https://doi.org/10.1111/ijlh.12464

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Chen D (2018) Purinergic regulation of neutrophil function. Front Immunol 9:399. https://doi.org/10.3389/fimmu.2018.00399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Swystun LL, Liaw PC (2016) The role of leukocytes in thrombosis. Blood 128(6):753–762. https://doi.org/10.1182/blood-2016-05-718114

    Article  CAS  PubMed  Google Scholar 

  29. Noubouossie DF, Reeves BN, Strahl BD, Key NS (2019) Neutrophils: back in the thrombosis spotlight. Blood133(20):2186–2197. doi: https://doi.org/10.1182/blood-2018-10-862243

  30. Amison RT, Arnold S, O’Shaughnessy BG, Cleary SJ, Ofoedu J, Idzko M, Page CP, Pitchford SC (2017) Lipopolysaccharide (LPS) induced pulmonary neutrophil recruitment and platelet activation is mediated via the P2Y1 and P2Y14 receptors in mice. Pulm Pharmacol Ther 45:62–68. https://doi.org/10.1016/j.pupt.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  31. Barrett MO, Sesma JI, Ball CB, Jayasekara PS, Jacobson KA, Lazarowski ER, Harden TK (2013) A selective high-affinity antagonist of the P2Y14 receptor inhibits UDP-glucose–stimulated chemotaxis of human neutrophils. Mol Pharmacol 84:41–49. https://doi.org/10.1124/mol.113.085654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sil P, Hayes CP, Reaves BJ, Breen P, Quinn S, Sokolove J, Rada B (2017) P2Y6 receptor antagonist MRS2578 inhibits neutrophil activation and aggregated neutrophil extracellular trap formation induced by gout-associated monosodium urate crystals. J Immunol 198:428–442. https://doi.org/10.4049/jimmunol.1600766

    Article  CAS  PubMed  Google Scholar 

  33. Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198(5):773–783. https://doi.org/10.1083/jcb.201203170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107:15880–15885. https://doi.org/10.1073/pnas.1005743107

    Article  PubMed  PubMed Central  Google Scholar 

  35. Massberg S, Grahl L, Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khandagale AB et al (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16:887–896. https://doi.org/10.1038/nm.2184

    Article  CAS  PubMed  Google Scholar 

  36. Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monestier M, Toy P, Werb Z, Looney MR (2012) Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 122(7):2661–2671. https://doi.org/10.1172/JCI61303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gündüz D, Tanislav C, Sedding D, Parahuleva M, Santoso S, Troidl C, Hamm CW, Aslam M (2017) Uridine triphosphate thio analogues inhibit platelet P2Y12 receptor and aggregation. Int J Mol Sci 18:269. https://doi.org/10.3390/ijms18020269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Bursa Uludağ University Scientific Research Projects Unit under Grant BUAP(T) − 2015/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Sağdilek.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arı, M., Sağdilek, E., Kılınç, E. et al. Effects of uridine and nucleotides on hemostasis parameters. J Thromb Thrombolysis 55, 626–633 (2023). https://doi.org/10.1007/s11239-023-02793-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-023-02793-y

Keywords

Navigation