Skip to main content

Advertisement

Log in

Expression and characterization of HSPC129, a RNA polymerase II C-terminal domain phosphatase

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Phosphorylation status of RNA polymerase (RNAP) II’s largest subunit C-terminal domain (CTD) plays an important role during transcription cycles. The reversible phosphorylation mainly occurs at serine 2 and serine 5 of CTD heptapeptide repeats and regulates RNAP II’s activity during transcription initiation, elongation and RNA processing. Here we expressed and characterized HSPC129, a putative human protein bearing a CTD phosphatase domain (CPD). PCR analysis showed that it was ubiquitously expressed. HSPC129ΔTM, the truncate HSPC129 with first 156 N terminal amino acids deleted, exhibited Mg2+ dependent phosphatase activity at pH 5.0. Its specific CTD phosphatase activity was verified in vitro. Our research suggests that HSPC129 may regulate the dynamic phosphorylation of RNAP II CTD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sayre MH, Tschochner H, Kornberg RD (1992) Reconstitution of transcription with 5 purified initiation-factors and RNA polymeraseII from Saccharomyces-cerevisiae. J Biol Chem 267:23376–23382

    PubMed  CAS  Google Scholar 

  2. Corden JL, Cadena DL, Ahearn JM et al (1985) A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymeraseII. Proc Natl Acad Sci USA 82:7934–7938

    Article  PubMed  CAS  Google Scholar 

  3. Dahmus ME (1996) Reversible phosphorylation of the C-terminal domain of RNA polymeraseII. J Biol Chem 271:19009–19012

    PubMed  CAS  Google Scholar 

  4. Goodrich JA, Tjian R (1994) Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA-polymerase II. Cell 77:145–156

    Article  PubMed  CAS  Google Scholar 

  5. Shatkin AJ, Manley JL (2000) The ends of the affair: capping and polyadenylation. Nat Struct Biol 7:838–842

    Article  PubMed  CAS  Google Scholar 

  6. Ahn SH, Kim M, Buratowski S (2004) Phosphorylation of serine 2 within the RNA polymeraseII C-terminal domain couples transcription and 30 end processing. Mol Cell 13:67–76

    Article  PubMed  CAS  Google Scholar 

  7. Ho CK, Shuman S (1999) Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol Cell 3:405–411

    Article  PubMed  CAS  Google Scholar 

  8. Rodriguez CR, Cho EJ, Keogh MC et al (2000) Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Mol Cell Biol 20:104–112

    Article  PubMed  CAS  Google Scholar 

  9. Hengartner CJ, Myer VE, Liao SM et al (1998) Temporal regulation of RNA polymeraseII by Srb10 and Kin28 cyclin-dependent kinases. Mol Cell 2:43–53

    Article  PubMed  CAS  Google Scholar 

  10. Zhou M, Halanski MA, Radonovich MF et al (2000) Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymeraseII carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol Cell Biol 20:5077–5086

    Article  PubMed  CAS  Google Scholar 

  11. Lu H, Zawel L, Fisher L et al (1992) Human general transcription factor II H phosphorylates the C-terminal domain of RNA polymeraseII. Nature 358:620–621

    Article  Google Scholar 

  12. Komarnitsky P, Cho EJ, Buratowski S (2000) Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 14:2452–2460

    Article  PubMed  CAS  Google Scholar 

  13. Corden JL (1990) Tails of RNA polymerase-II. Trends Biochem Sci 15:383–387

    Article  PubMed  CAS  Google Scholar 

  14. Kang ME, Dahmus ME (1993) RNA polymerase-II A and polymerase-II O have distinct roles during transcription from the TATA-less murine dihydrofolate-reductase promoter. J Biol Chem 268:25033–25040

    PubMed  CAS  Google Scholar 

  15. Chambers RS, Dahmus ME (1994) Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C terminal domain of RNA polymerase II. J Biol Chem 269:26243–26248

    PubMed  CAS  Google Scholar 

  16. Yeo M, Lin PS, Dahmus ME et al (2003) A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J Biol Chem 278:26078–26085

    Article  PubMed  CAS  Google Scholar 

  17. Zheng HR, Ji CN, Gu SH et al (2005) Cloning and characterization of a novel RNA polymerase II C-terminal domain phosphatase. BBRC 331:1401–1407

    PubMed  CAS  Google Scholar 

  18. Lin PS, Dubois MF, Dahmus ME (2002) TFIIF-associating carboxyl-terminal domain phosphatase dephosphorylates phosphor-serines 2 and 5 of RNA polymerase II. J Biol Chem 277:45949–45956

    Article  PubMed  CAS  Google Scholar 

  19. Kamenski T, Heilmeier S, Meinhart A et al (2004) Structure and mechanism of RNA polymerase II CTD phosphatases. Mol Cell 15:399–407

    Article  PubMed  CAS  Google Scholar 

  20. Zhang QH, Ye M, Wu XY et al (2000) Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells. Genome Res 10:1546–1560

    Article  PubMed  CAS  Google Scholar 

  21. Kemmer D, Podowski RM, Arenillas D (2006) NovelFam3000-uncharacterized human protein domains. BMC Genomics 7:1471–2164

    Article  CAS  Google Scholar 

  22. Peterson SR, Dvir A, Anderson CW et al (1992) DNA binding provides a signal for phosphorylation of the RNA polymerase II heptapeptide repeats. Genes Dev 6:426–438

    Article  PubMed  CAS  Google Scholar 

  23. Koiwa H, Hausmann S, Bang WY et al (2004) Arabidopsis C-terminal domain phosphatase-like 1 and 2 are essential Ser-5-specific C-terminal domain phosphatases. Proc Natl Acad Sci USA 101:14539–14544

    Article  PubMed  CAS  Google Scholar 

  24. Hausmann S, Shuman S (2003) Defining the active site of Schizosaccharomyces pombe C-terminal domain phosphatase fcp1. J Biol Chem 278:13627–13632

    Article  PubMed  CAS  Google Scholar 

  25. Hausmann S, Erdjument-Bromage H, Shuman S (2004) Schizosaccharomyces pombe carboxyl-terminal domain (CTD) phosphatase Fcp1-distributive mechanism, minimal CTD substrate, and active site mapping. J Biol Chem 279:10892–10900

    Article  PubMed  CAS  Google Scholar 

  26. Hausmann S, Shuman S (2002) Characterization of the CTD phosphatase Fcp1 from fission yeast. J Biol Chem 277:21213–21220

    Article  PubMed  CAS  Google Scholar 

  27. Ohno M, Fornerod M, Mattaj IW (1998) Nucleocytoplasmic transport: the last 200 nanometers. Cell 92:327–336

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Grants from the 863 Projects of Ministry of Science and Technology of P.R. China (No. 2003AA221020) and Key project of National Natural Science Foundation of China (No. 10490190 & 10490193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumin Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, H., Ji, C., Zhao, S. et al. Expression and characterization of HSPC129, a RNA polymerase II C-terminal domain phosphatase. Mol Cell Biochem 303, 183–188 (2007). https://doi.org/10.1007/s11010-007-9472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9472-z

Keywords

Navigation