Skip to main content

HSF1 in RNA Polymerase II Promoter-Proximal Pausing and HSP70 Transcription

  • Chapter
  • First Online:
Heat Shock Proteins in Inflammatory Diseases

Part of the book series: Heat Shock Proteins ((HESP,volume 22))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGO:

Argonaute

ATM:

Ataxia telangiectasia mutated

ChIP-seq:

Chromatin immunoprecipitation sequencing

CTD:

C-terminal domain

DDR:

DNA damage response

DNA-PK:

DNA-dependent protein kinase

DSB:

DNA double strand break

DSIF:

DRB sensitivity-inducing factor

FACT:

Facilitates chromatin transcription

H3K4me3:

H3 trimethylated at lysine 4

HSE:

Heat shock element

HSF1:

Heat shock factor 1

HSP:

Heat shock protein

m7G:

7-methyl guanosine

NELF:

Negative elongation factor

NTP:

Nucleoside triphosphate

NURF:

Nucleosome remodeling factor

PARP:

Poly(ADP)-ribose polymerase

PI3:

Phosphoinositide-3

Pol II:

RNA polymerase II

P-TEFb:

Positive transcription elongation factor b

RNA-seq:

RNA sequencing

SWI/SNF:

Switch/Sucrose non-fermentable

TBP:

TATA box binding protein

TOP2B:

Topoisomerase IIβ

TRIM28:

Tripartite motif-containing 28

Trl:

Trithorax-like

TSS:

Transcription start site

References

  1. Bunch H (2017) RNA polymerase II pausing and transcriptional regulation of the HSP70 expression. Eur J Cell Biol 96:739–745

    Article  CAS  PubMed  Google Scholar 

  2. Roeder RG (2019) 50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms. Nat Struct Mol Biol 26:783–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bunch H (2018) Gene regulation of mammalian long non-coding RNA. Mol Gen Genet 293:1–15

    Article  CAS  Google Scholar 

  4. Cramer P (2004) Structure and function of RNA polymerase II. Adv Protein Chem 67:1–42

    Article  CAS  PubMed  Google Scholar 

  5. Hahn S (2004) Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 11:394–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Phatnani HP, Greenleaf AL (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20:2922–2936

    Article  CAS  PubMed  Google Scholar 

  7. Buratowski S (2003) The CTD code. Nat Struct Biol 10:679–680

    Article  CAS  PubMed  Google Scholar 

  8. Itzen F, Greifenberg AK, Bosken CA, Geyer M (2014) Brd4 activates P-TEFb for RNA polymerase II CTD phosphorylation. Nucleic Acids Res 42:7577–7590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sawadogo M, Roeder RG (1985) Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43:165–175

    Article  CAS  PubMed  Google Scholar 

  10. Bunch H et al (2014) TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Nat Struct Mol Biol 21:876–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ebmeier CC, Taatjes DJ (2010) Activator-mediator binding regulates mediator-cofactor interactions. Proc Natl Acad Sci U S A 107:11283–11288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Poss ZC, Ebmeier CC, Taatjes DJ (2013) The mediator complex and transcription regulation. Crit Rev Biochem Mol Biol 48:575–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shandilya J, Roberts SG (2012) The transcription cycle in eukaryotes: from productive initiation to RNA polymerase II recycling. Biochim Biophys Acta 1819:391–400

    Article  CAS  PubMed  Google Scholar 

  14. Rasmussen EB, Lis JT (1993) In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc Natl Acad Sci U S A 90:7923–7927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rahl PB et al (2010) c-Myc regulates transcriptional pause release. Cell 141:432–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McClure WR (1980) Rate-limiting steps in RNA chain initiation. Proc Natl Acad Sci U S A 77:5634–5638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Henderson KL et al (2017) Mechanism of transcription initiation and promoter escape by E. coli RNA polymerase. Proc Natl Acad Sci U S A 114:E3032–E3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nechaev S et al (2010) Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327:335–338

    Article  CAS  PubMed  Google Scholar 

  19. Lee C et al (2008) NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol Cell Biol 28:3290–3300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gilmour DS (2009) Promoter proximal pausing on genes in metazoans. Chromosoma 118:1–10

    Article  CAS  PubMed  Google Scholar 

  21. Rougvie AE, Lis JT (1988) The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54:795–804

    Article  CAS  PubMed  Google Scholar 

  22. Gilmour DS, Lis JT (1986) RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol Cell Biol 6:3984–3989

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gilchrist DA et al (2008) NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev 22:1921–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu CH et al (2003) NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev 17:1402–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamaguchi Y et al (1999) NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97:41–51

    Article  CAS  PubMed  Google Scholar 

  26. Vos SM, Farnung L, Urlaub H, Cramer P (2018) Structure of paused transcription complex Pol II-DSIF-NELF. Nature 560:601–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wada T et al (1998) DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 12:343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Szlachta K et al (2018) Alternative DNA secondary structure formation affects RNA polymerase II promoter-proximal pausing in human. Genome Biol 19:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Jishage M et al (2012) Transcriptional regulation by Pol II(G) involving mediator and competitive interactions of Gdown1 and TFIIF with Pol II. Mol Cell 45:51–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma J, Bai L, Wang MD (2013) Transcription under torsion. Science 340:1580–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma J et al (2019) Transcription factor regulation of RNA polymerase’s torque generation capacity. Proc Natl Acad Sci U S A 116:2583–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu X, Kraus WL, Bai X (2015) Ready, pause, go: regulation of RNA polymerase II pausing and release by cellular signaling pathways. Trends Biochem Sci 40:516–525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bunch H et al (2015) Transcriptional elongation requires DNA break-induced signalling. Nat Commun 6:10191

    Article  CAS  PubMed  Google Scholar 

  34. Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13:720–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Core L, Adelman K (2019) Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev 33:960–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nilson KA et al (2015) THZ1 reveals roles for Cdk7 in co-transcriptional capping and pausing. Mol Cell 59:576–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ebmeier CC et al (2017) Human TFIIH kinase CDK7 regulates transcription-associated chromatin modifications. Cell Rep 20:1173–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun J, Li R (2010) Human negative elongation factor activates transcription and regulates alternative transcription initiation. J Biol Chem 285:6443–6452

    Article  CAS  PubMed  Google Scholar 

  39. Bunch H (2016) Role of genome guardian proteins in transcriptional elongation. FEBS Lett 590:1064–1075

    Article  CAS  PubMed  Google Scholar 

  40. Madabhushi R et al (2015) Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161:1592–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bunch H et al (2016) RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes. Genomics 108:64–77

    Article  CAS  PubMed  Google Scholar 

  42. Kainz M, Roberts JW (1995) Kinetics of RNA polymerase initiation and pausing at the lambda late gene promoter in vivo. J Mol Biol 254:808–814

    Article  CAS  PubMed  Google Scholar 

  43. Liu X, Jiang H, Gu Z, Roberts JW (2013) High-resolution view of bacteriophage lambda gene expression by ribosome profiling. Proc Natl Acad Sci U S A 110:11928–11933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Petushkov I, Esyunina D, Kulbachinskiy A (2017) Possible roles of sigma-dependent RNA polymerase pausing in transcription regulation. RNA Biol 14:1678–1682

    Article  PubMed  PubMed Central  Google Scholar 

  45. Grayhack EJ, Yang XJ, Lau LF, Roberts JW (1985) Phage lambda gene Q antiterminator recognizes RNA polymerase near the promoter and accelerates it through a pause site. Cell 42:259–269

    Article  CAS  PubMed  Google Scholar 

  46. Zhu J, Liu M, Liu X, Dong Z (2018) RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis. Nature plants 4:1112–1123

    Article  CAS  PubMed  Google Scholar 

  47. Hetzel J, Duttke SH, Benner C, Chory J (2016) Nascent RNA sequencing reveals distinct features in plant transcription. Proc Natl Acad Sci U S A 113:12316–12321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu X, Martin PGP, Michaels SD (2019) BORDER proteins protect expression of neighboring genes by promoting 3’ Pol II pausing in plants. Nat Commun 10:4359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Peterlin BM, Price DH (2006) Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23:297–305

    Article  CAS  PubMed  Google Scholar 

  50. Yamada T et al (2006) P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol Cell 21:227–237

    Article  CAS  PubMed  Google Scholar 

  51. Fujinaga K et al (2004) Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol Cell Biol 24:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Byun JS et al (2012) ELL facilitates RNA polymerase II pause site entry and release. Nat Commun 3:633

    Article  PubMed  CAS  Google Scholar 

  53. Liang K et al (2018) Targeting Processive transcription elongation via SEC disruption for MYC-induced Cancer therapy. Cell 175:766–779 e717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bunch H, Calderwood SK (2015) TRIM28 as a novel transcriptional elongation factor. BMC Mol Biol 16:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Benjamin LR, Gilmour DS (1998) Nucleosomes are not necessary for promoter-proximal pausing in vitro on the Drosophila hsp70 promoter. Nucleic Acids Res 26:1051–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Petesch SJ, Lis JT (2008) Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134:74–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zobeck KL, Buckley MS, Zipfel WR, Lis JT (2010) Recruitment timing and dynamics of transcription factors at the Hsp70 loci in living cells. Mol Cell 40:965–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Corey LL, Weirich CS, Benjamin IJ, Kingston RE (2003) Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev 17:1392–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. de La Serna IL et al (2000) Mammalian SWI-SNF complexes contribute to activation of the hsp70 gene. Mol Cell Biol 20:2839–2851

    Article  PubMed Central  Google Scholar 

  60. Chen B, Retzlaff M, Roos T, Frydman J (2011) Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 3:a004374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hammerer-Lercher A et al (2001) Hypoxia induces heat shock protein expression in human coronary artery bypass grafts. Cardiovasc Res 50:115–124

    Article  CAS  PubMed  Google Scholar 

  62. Hentze N, Le Breton L, Wiesner J, Kempf G, Mayer MP (2016) Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. elife 5:e11576

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vihervaara A, Sistonen L (2014) HSF1 at a glance. J Cell Sci 127:261–266

    Article  CAS  PubMed  Google Scholar 

  64. Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  65. Lis JT, Neckameyer W, Dubensky R, Costlow N (1981) Cloning and characterization of nine heat-shock-induced mRNAs of Drosophila melanogaster. Gene 15:67–80

    Article  CAS  PubMed  Google Scholar 

  66. Moran L et al (1979) Physical map of two D. melanogaster DNA segments containing sequences coding for the 70,000 dalton heat shock protein. Cell 17:1–8

    Article  CAS  PubMed  Google Scholar 

  67. Werner F, Grohmann D (2011) Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol 9:85–98

    Article  CAS  PubMed  Google Scholar 

  68. Kapanidis AN et al (2006) Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314:1144–1147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Winkelman JT, Gourse RL (2017) Open complex DNA scrunching: a key to transcription start site selection and promoter escape. BioEssays News Rev Mol Cell Dev Biol 39:1600193

    Article  CAS  Google Scholar 

  70. Porrua O, Libri D (2015) Transcription termination and the control of the transcriptome: why, where and how to stop. Nat Rev Mol Cell Biol 16:190–202

    Article  CAS  PubMed  Google Scholar 

  71. Proudfoot NJ (2016) Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352:aad9926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Larochelle M et al (2018) Common mechanism of transcription termination at coding and noncoding RNA genes in fission yeast. Nat Commun 9:4364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ping YH, Rana TM (2001) DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J Biol Chem 276:12951–12958

    Article  CAS  PubMed  Google Scholar 

  74. Li J et al (2013) Kinetic competition between elongation rate and binding of NELF controls promoter-proximal pausing. Mol Cell 50:711–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Muse GW et al (2007) RNA polymerase is poised for activation across the genome. Nat Genet 39:1507–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gressel S, Schwalb B, Cramer P (2019) The pause-initiation limit restricts transcription activation in human cells. Nat Commun 10:3603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Samarakkody A et al (2015) RNA polymerase II pausing can be retained or acquired during activation of genes involved in the epithelial to mesenchymal transition. Nucleic Acids Res 43:3938–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bunch H, Calderwood SK (2015) TRIM28 as a novel transcriptional elongation factor. BMC Mol Biol 16:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Jimeno-Gonzalez S, Ceballos-Chavez M, Reyes JC (2015) A positioned +1 nucleosome enhances promoter-proximal pausing. Nucleic Acids Res 43:3068–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Petesch SJ, Lis JT (2012) Overcoming the nucleosome barrier during transcript elongation. Trends Genet 28:285–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Teves SS, Henikoff S (2011) Heat shock reduces stalled RNA polymerase II and nucleosome turnover genome-wide. Genes Dev 25:2387–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tettey TT et al (2019) A role for FACT in RNA polymerase II promoter-proximal pausing. Cell Rep 27:3770–3779 e3777

    Article  CAS  PubMed  Google Scholar 

  83. Levine M (2011) Paused RNA polymerase II as a developmental checkpoint. Cell 145:502–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ohtsuki S, Levine M (1998) GAGA mediates the enhancer blocking activity of the eve promoter in the Drosophila embryo. Genes Dev 12:3325–3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tsai SY, Chang YL, Swamy KB, Chiang RL, Huang DH (2016) GAGA factor, a positive regulator of global gene expression, modulates transcriptional pausing and organization of upstream nucleosomes. Epigenetics Chromatin 9:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kusch T, Mei A, Nguyen C (2014) Histone H3 lysine 4 trimethylation regulates cotranscriptional H2A variant exchange by Tip60 complexes to maximize gene expression. Proc Natl Acad Sci U S A 111:4850–4855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cernilogar FM et al (2011) Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 480:391–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Buckley MS, Kwak H, Zipfel WR, Lis JT (2014) Kinetics of promoter Pol II on Hsp70 reveal stable pausing and key insights into its regulation. Genes Dev 28:14–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Calderwood SK, Murshid A (2017) Molecular chaperone accumulation in cancer and decrease in Alzheimer’s disease: the potential roles of HSF1. Front Neurosci 11:192

    Article  PubMed  PubMed Central  Google Scholar 

  90. Witkin SS, Kanninen TT, Sisti G (2017) The role of Hsp70 in the regulation of autophagy in gametogenesis, pregnancy, and parturition. Adv Anat Embryol Cell Biol 222:117–127

    Article  PubMed  Google Scholar 

  91. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  CAS  PubMed  Google Scholar 

  92. Lis JT, Mason P, Peng J, Price DH, Werner J (2000) P-TEFb kinase recruitment and function at heat shock loci. Genes Dev 14:792–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yoon YJ et al (2011) KRIBB11 inhibits HSP70 synthesis through inhibition of heat shock factor 1 function by impairing the recruitment of positive transcription elongation factor b to the hsp70 promoter. J Biol Chem 286:1737–1747

    Article  CAS  PubMed  Google Scholar 

  94. Yuan CX, Gurley WB (2000) Potential targets for HSF1 within the preinitiation complex. Cell Stress Chaperones 5:229–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sullivan EK, Weirich CS, Guyon JR, Sif S, Kingston RE (2001) Transcriptional activation domains of human heat shock factor 1 recruit human SWI/SNF. Mol Cell Biol 21:5826–5837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fujimoto M et al (2017) The HSF1-PARP13-PARP1 complex facilitates DNA repair and promotes mammary tumorigenesis. Nat Commun 8:1638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Stephanou A, Latchman DS (2011) Transcriptional modulation of heat-shock protein gene expression. Biochem Res Int 2011:238601

    Article  PubMed  CAS  Google Scholar 

  98. Mazina MY, Nikolenko YV, Krasnov AN, Vorobyeva NE (2016) SWI/SNF protein complexes participate in the initiation and elongation stages of drosophila hsp70 gene transcription. Genetika 52:164–169

    PubMed  Google Scholar 

  99. Murawska M, Hassler M, Renkawitz-Pohl R, Ladurner A, Brehm A (2011) Stress-induced PARP activation mediates recruitment of Drosophila Mi-2 to promote heat shock gene expression. PLoS Genet 7:e1002206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pinnola A, Naumova N, Shah M, Tulin AV (2007) Nucleosomal core histones mediate dynamic regulation of poly(ADP-ribose) polymerase 1 protein binding to chromatin and induction of its enzymatic activity. J Biol Chem 282:32511–32519

    Article  CAS  PubMed  Google Scholar 

  101. Thomas C et al (2019) Hit and run versus long-term activation of PARP-1 by its different domains fine-tunes nuclear processes. Proc Natl Acad Sci U S A 116:9941–9946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Haffner MC et al (2010) Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 42:668–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ju BG et al (2006) A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 312:1798–1802

    Article  CAS  PubMed  Google Scholar 

  104. Williamson LM, Lees-Miller SP (2011) Estrogen receptor alpha-mediated transcription induces cell cycle-dependent DNA double-strand breaks. Carcinogenesis 32:279–285

    Article  CAS  PubMed  Google Scholar 

  105. Pommier Y, Sun Y, Huang SN, Nitiss JL (2016) Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol 17:703–721

    Article  CAS  PubMed  Google Scholar 

  106. White D et al (2012) The ATM substrate KAP1 controls DNA repair in heterochromatin: regulation by HP1 proteins and serine 473/824 phosphorylation. Mol Cancer Res 10:401–414

    Article  CAS  PubMed  Google Scholar 

  107. Mondal N et al (2003) Elongation by RNA polymerase II on chromatin templates requires topoisomerase activity. Nucleic Acids Res 31:5016–5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A 84:7024–7027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Crisona NJ, Strick TR, Bensimon D, Croquette V, Cozzarelli NR (2000) Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev 14:2881–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dellino GI et al (2019) Release of paused RNA polymerase II at specific loci favors DNA double-strand-break formation and promotes cancer translocations. Nat Genet 51:1011–1023

    Article  CAS  PubMed  Google Scholar 

  111. Nitiss JL (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. McKinnon PJ (2016) Topoisomerases and the regulation of neural function. Nat Rev Neurosci 17:673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Morimoto S et al (2019) Type II DNA topoisomerases cause spontaneous double-strand breaks in genomic DNA. Genes 10:868

    Article  CAS  PubMed Central  Google Scholar 

  114. Sasanuma H et al (2018) BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II-DNA complexes. Proc Natl Acad Sci U S A 115:E10642–E10651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Brown SA, Imbalzano AN, Kingston RE (1996) Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev 10:1479–1490

    Article  CAS  PubMed  Google Scholar 

  116. Gilchrist DA et al (2010) Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell 143:540–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pan XY et al (2016) Heat shock factor 1 mediates latent HIV reactivation. Sci Rep 6:26294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim S, Gross DS (2013) Mediator recruitment to heat shock genes requires dual Hsf1 activation domains and mediator tail subunits Med15 and Med16. J Biol Chem 288:12197–12213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Allen BL, Taatjes DJ (2015) The mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 16:155–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Takahashi H et al (2011) Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 146:92–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang Z et al (2005) Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 19:535–545

    Article  CAS  PubMed  Google Scholar 

  122. Badenhorst P, Voas M, Rebay I, Wu C (2002) Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev 16:3186–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chen M, Beck WT (1995) DNA topoisomerase II expression, stability, and phosphorylation in two VM-26-resistant human leukemic CEM sublines. Oncol Res 7:103–111

    CAS  PubMed  Google Scholar 

  124. Kondapi AK, Padmaja G, Satyanarayana N, Mukhopadyaya R, Reitz MS (2005) A biochemical analysis of topoisomerase II alpha and beta kinase activity found in HIV-1 infected cells and virus. Arch Biochem Biophys 441:41–55

    Article  CAS  PubMed  Google Scholar 

  125. Kimura K, Nozaki N, Enomoto T, Tanaka M, Kikuchi A (1996) Analysis of M phase-specific phosphorylation of DNA topoisomerase II. J Biol Chem 271:21439–21445

    Article  CAS  PubMed  Google Scholar 

  126. Nakazawa N, Arakawa O, Ebe M, Yanagida M (2019) Casein kinase II-dependent phosphorylation of DNA topoisomerase II suppresses the effect of a catalytic topo II inhibitor, ICRF-193, in fission yeast. J Biol Chem 294:3772–3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ackerman P, Glover CV, Osheroff N (1985) Phosphorylation of DNA topoisomerase II by casein kinase II: modulation of eukaryotic topoisomerase II activity in vitro. Proc Natl Acad Sci U S A 82:3164–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sahyoun N et al (1986) Protein kinase C phosphorylates topoisomerase II: topoisomerase activation and its possible role in phorbol ester-induced differentiation of HL-60 cells. Proc Natl Acad Sci U S A 83:1603–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I appreciate S.K. Calderwood at Beth Israel Deaconess Medical Center and D.J. Taatjes at the University of Colorado for their support to study the transcriptional regulation at HSP70. I thank previous and current Bunch lab members in the School of Applied Biosciences at Kyungpook National University (KNU), J. Christ, John, and D.Y. Bunch for their support and loving encouragement. I also thank International Edit for the help with proofreading manuscript. This study was supported by a grant from Korea National Foundation (NRF) (NRF-2017R1D1A1B03030548 and NRF-2020R1F1A1060996) to H.B.

Disclosure of Interest

There is no conflict of interest for the enclosed review article.

Ethical Approval for Studies Involving Humans

This article does not contain any studies with human participants performed by any of the authors.

Ethical Approval for Studies Involving Animals

This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heeyoun Bunch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bunch, H. (2021). HSF1 in RNA Polymerase II Promoter-Proximal Pausing and HSP70 Transcription. In: Asea, A.A.A., Kaur, P. (eds) Heat Shock Proteins in Inflammatory Diseases. Heat Shock Proteins, vol 22. Springer, Cham. https://doi.org/10.1007/7515_2021_38

Download citation

Publish with us

Policies and ethics