Skip to main content

Advertisement

Log in

The metabolic changes caused by dexamethasone in the adjuvant-induced arthritic rat

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The action of orally administered dexamethasone (0.2 mg kg−1 day−1) on metabolic parameters of adjuvant-induced arthritic rats was investigated. The body weight gain and the progression of the disease were also monitored. Dexamethasone was very effective in suppressing the Freund’s adjuvant-induced paw edema and the appearance of secondary lesions. In contrast, the body weight loss of dexamethasone-treated arthritic rats was more accentuated than that of untreated arthritic or normal rats treated with dexamethasone, indicating additive harmful effects. The perfused livers from dexamethasone-treated arthritic rats presented high content of glycogen in both fed and fasted conditions, as indicated by the higher rates of glucose release in the absence of exogenous substrate. The metabolization of exogenous l-alanine was increased in livers from dexamethasone-treated arthritic rats in comparison with untreated arthritic rats, but there was a diversion of carbon flux from glucose to l-lactate and pyruvate. Plasmatic levels of insulin and glucose were significantly higher in arthritic rats following dexamethasone administration. Most of these changes were also found in livers from normal rats treated with dexamethasone. The observed changes in l-alanine metabolism and glycogen synthesis indicate that insulin was the dominant hormone in the regulation of the liver glucose metabolism even in the fasting condition. The prevalence of the metabolic effects of dexamethasone over those ones induced by the arthritis disease suggests that dexamethasone administration was able to suppress the mechanisms implicated in the development of the arthritis-induced hepatic metabolic changes. It seems thus plausible to assume that those factors responsible for the inflammatory responses in the paws and for the secondary lesions may be also implicated in the liver metabolic changes, but not in the body weight loss of arthritic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walsmith J, Roubenoff R (2002) Cachexia in rheumatoid arthritis. Int J Cardiol 85:89–99

    Article  PubMed  Google Scholar 

  2. Rosenthale ME (1970) A comparative study of the Lewis and Sprague Dawley rat in adjuvant arthritis. Arch Int Pharmacodyn Ther 188:14–22

    PubMed  CAS  Google Scholar 

  3. Caparroz-Assef SM, Bersani-Amado CA, Nascimento EA, Kelmer-Bracht AM, Ishii-Iwamoto EL (1998) Effects of the nonsteroidal anti-inflammatory drug nimesulide on energy metabolism in livers from adjuvant-induced arthritic rats. Res Commun Mol Pathol Pharmacol 99:93–116

    PubMed  CAS  Google Scholar 

  4. Fedatto-Júnior Z, Ishii-Iwamoto EL, Amado CB, Vicentini G, D’Urso-Panerari A, Bracht A, Kelmer-Bracht AM (1999) Gluconeogenesis in the liver of arthritic rats. Cell Biochem Funct 17:271–278

    Article  PubMed  Google Scholar 

  5. Fedatto-Júnior Z, Ishii-Iwamoto EL, Caparroz-Assef SM, Vicentini GE, Bracht A, Kelmer-Bracht AM (2002) Glycogen levels and glycogen catabolism in livers from arthritic rats. Mol Cell Biochem 229:1–7

    Article  PubMed  Google Scholar 

  6. Fedatto-Júnior Z, Ishii-Iwamoto EL, Amado CB, Maciel ERM, Bracht A, Kelmer-Bracht AM (2000) Glucose phosphorylation capacity and glycolysis in the liver of arthritic rats. Inflamm Res 49:128–132

    Article  Google Scholar 

  7. Yassuda Filho P, Bracht A, Ishii-Iwamoto EL, Lousano SH, Bracht L, Kelmer-Bracht A (2003) The urea cycle in the liver of arthritic rats. Mol Cell Biochem 243:97–106

    Article  PubMed  CAS  Google Scholar 

  8. Da Silva JAP, Bijlsma JWJ (2000) Optimizing glucocorticoid therapy of rheumatoid arthritis. Rheum Dis Clin North Am 26:859–880

    Article  PubMed  CAS  Google Scholar 

  9. Moreland LW, O’Deal JR (2002) Glucocorticoids and rheumatoid arthritis: back to the future? Arthritis Rheum 46:2553–2563

    Article  PubMed  CAS  Google Scholar 

  10. O’Dell JR (2004) Therapeutic strategies for rheumatoid arthritis. New Engl J Med 350:2591–2602

    Article  PubMed  CAS  Google Scholar 

  11. Brinkman V, Kristofic C (1995) Regulation by corticosteroids of Th 1 and Th 2 cytokine production in human CD4+ effector T cells generated from CD45RO and CD45RO+ subsets. J Immunol 155:3322–3328

    Google Scholar 

  12. Bendele AM, McComb J, Gould T, Frazier J, Chlipala ES, Seely J, Kieft G, Wolf J, Edwards CK III (1999) Combination benefit of PEGylated soluble tumor necrosis factor receptor type I (PEGsTNF-TI) and dexamethasone or indomethacin in adjuvant arthritic rats. Inflamm Res 48:453–460

    Article  PubMed  CAS  Google Scholar 

  13. Amano Y, Lee SW, Allison AC (1992) Inhibition by glucocorticoids of the formation of interleukin-1α, interleukin-1β, interleukin-6: mediation by decreased mRNA stability. Mol Pharmacol 43:176–182

    Google Scholar 

  14. Caldenhoven E, Liden J, Wissink S, Van de Stolpe A, Raaijmakers J, Koenderman L, Okret S, Gustafsson JA, Van der Saag PT (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the anti-inflammatory action of glucocorticoid. Mol Endocrinol 9:401–412

    Article  PubMed  CAS  Google Scholar 

  15. Lavagno L, Gunella G, Bardelli C, Soina S, Fresu LG, Viano I, Brunelleschi S (2004) Anti-inflammatory drugs and tumor necrosis factors-α production: role of transcription factor NF-κB and implication for rheumatoid arthritis therapy. Eur J Pharmacol 501:199–208

    Article  PubMed  CAS  Google Scholar 

  16. Dirlewanger M, Schneiter PH, Paquot N, Jequier E, Rey V, Tappy L (2000) Effects of glucocorticoids on hepatic sensitivity to insulin and glucagon in man. Clin Nutr 19:29–34

    Article  PubMed  CAS  Google Scholar 

  17. Boyle PJ (1993) Cushing’s disease, glucocorticoid excess, glucocorticoid deficieny, and diabetes. Diabetes Res 1:301–308

    Google Scholar 

  18. Wang M (2005) The role of glucocorticoid action in the pathophysiology of the metabolic syndrome. Nutr Metab 2:3

    Article  CAS  Google Scholar 

  19. Walsmith J, Abad L, Snydman L, Lundgren N, Roubenoff R (2000) Interleukin 1-β and tumor necrosis factor-α exhibit different metabolic effects in rheumatoid arthritis. FASEB J 14:A525

    Google Scholar 

  20. Choy EHS, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. New Engl J Med 344:907–916

    Article  PubMed  CAS  Google Scholar 

  21. Allison AC, Lee SW (1989) The mode of action of anti-rheumatic drugs. I. Anti-inflammatory and immunosuppressive effects of glucocorticoids. Prog Drug Res 33:63–81

    PubMed  CAS  Google Scholar 

  22. Simon LS (1999) Role and regulation of cyclooxygenase-2 during inflammation. Am J Med 106:37S–42S

    Article  PubMed  CAS  Google Scholar 

  23. Scholz R, Bücher T (1965) Hemoglobin-free perfusion of rat liver. In: Chance B, Estabrook RW, Williamson JR (eds) Control of energy metabolism. Academic Press, New York, pp 393–414

    Google Scholar 

  24. Bergmeyer HU, Bernt E (1974) Glucose determination with glucose oxidase and peroxidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 1205–1212

    Google Scholar 

  25. Gutman I, Wahlefeld AW (1974) (+)Lactate determination with lactate dehydrogenase and NAD+. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 1464–1468

    Google Scholar 

  26. Czok R, Lamprecht W (1974) Pyruvate, phosphoenolpyruvate and glycerate-2-phosphate. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 1446–1451

    Google Scholar 

  27. Bergmeyer HU (1974) Determination of urea with glutamate dehydrogenase as indicator enzyme. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 1794–1801

    Google Scholar 

  28. Kun F, Kearney EB (1974) Ammonia. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 1801–1806

    Google Scholar 

  29. Goldstein RE, Wasserman DH, McGuinness OP, Lacy DB, Cherrington AD, Abumrad NN (1992) Effects of chronic elevation in plasma cortisol on hepatic carbohydrate metabolism. Am J Physiol Endocrinol Metab 264:E119–E127

    Google Scholar 

  30. Kobayashi T, Iwai H, Uchimoto R, Ohta M, Shiota M, Sugano T (1989) Gluconeogenesis in perfused livers from dexamethasone-treated chickens. Am J Physiol Regul Integr Comp Physiol 256:R907–R914

    CAS  Google Scholar 

  31. Kimmig R, Mauch TJ, Kerzl W, Schwabe U, Scholz R (1983) Actions of glucagon on flux rates in perfused rat liver. 1. Kinetics of the inhibitory effect on glycolysis and the stimulatory effect on glycogenolysis. Eur J Biochem 136:609–616

    Article  PubMed  CAS  Google Scholar 

  32. Jin JY, DuBois DC, Alman RR, Jusko WJ (2004) Receptor/Gene-mediated pharmacodynamic effects of methylprednisolone on phosphoenolpyruvate carboxykinase regulation in rat liver. J Pharmacol Exp Ther 309:328–339

    Article  PubMed  CAS  Google Scholar 

  33. Jones CG, Hothi SK, Titheradge A (1993) Effect of dexamethasone on gluconeogenesis, piruvate kinase, pyruvate carboxylase and pyruvate dehydrogenase flux in isolated hepatocytes. Biochem J 289:821–828

    PubMed  CAS  Google Scholar 

  34. Burlini N, Morandi S, Pellegrini R, Tortora P, Guerritore A (1989) Studies on the degradative mechanism of phosphoenolpyruvate carboxykinase from yeast Saccharomyces cerevisiae. Biochem Biophys Acta 1014:153–161

    Article  PubMed  CAS  Google Scholar 

  35. O’Brien RM, Granner DK (1990) PEPCK gene as model of inhibitory effects of insulin on gene transcription. Diabetes Care 13:327–339

    Article  PubMed  CAS  Google Scholar 

  36. Nielsen MF, Caumo A, Chandramouli V, Schumann WC, Cobelli C, Landau BR, Vilstrup H, Rizza RA, Schmitz O (2004) Impaired basal glucose effectiveness but unaltered fasting glucose release and gluconeogenesis during short-term hypercortisolemia in healthy subjects. Am J Physiol Endocrinol Metab 286:E102–E110

    Article  PubMed  CAS  Google Scholar 

  37. Smith OK, Long CNH (1967) Effect of cortisol on the plasma amino nitrogen of eviscerated adrenalectomized-diabetic rats. Endocrinology 80:561–566

    Article  PubMed  CAS  Google Scholar 

  38. Sutherland EW III, Haynes RC Jr (1967) Increased release of aminoacids from rats thymus after cortisol administration. Endocrinology 80:288–296

    PubMed  CAS  Google Scholar 

  39. Wise JK, Hendler R, Felig P (1973) Influence of glucocortocoids on glucagon secretion and plasma aminoacid concentration in man. J Clin Invest 52:2774–2782

    PubMed  CAS  Google Scholar 

  40. Kuwajima M, Golden S, Katz J, Unger RH, Foster DW, McGarry JD (1986) Active hepatic glycogen synthesis from gluconeogenic precursors despite high tissue levels of fructose 2,6-bisphosphate. J Biol Chem 261:2632–2337

    PubMed  CAS  Google Scholar 

  41. Magnusson I, Rothman DL, Jucker B, Cline GW, Shulman RG, Shulman GI (1994) Liver glycogen turnover in fed and fasted humans. Am J Physiol Endocrinol Metab 266:E796–E803

    CAS  Google Scholar 

  42. Roden M, Perseghin G, Petersen KF, Hwang JH, Clive GW, Gerow K, Rothman DJ, Shulman GI (1996) The role of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. J Clin Invest 97:642–648

    PubMed  CAS  Google Scholar 

  43. Hellerstein MK, Neese RA, Linfoot P, Christiansen M, Turner S, Letscher A (1997) Hepatic gluconeogenic fluxes and glycogen turnover during fasting in humans. A stable isotope study. J Clin Invest 100:1305–1319

    PubMed  CAS  Google Scholar 

  44. Pilkis SJ, Granner DK (1992) Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Ann Rev Physiol 54:885–909

    Article  CAS  Google Scholar 

  45. Petersen KF, Laurent D, Rothman DL, Cline GW, Shulman GI (1998) Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J Clin Invest 101:1203–1209

    Article  PubMed  CAS  Google Scholar 

  46. Klein HH, Ullmann S, Drenckhan M, Grimmsmann T, Unthan-Fechner K, Probst I (2002) Differential modulation of insulin actions by dexamethasone: studies in primary cultures of adult rat hepatocytes. J Hepatol 37:432–440

    Article  PubMed  CAS  Google Scholar 

  47. Reynolds RM, Walker BR (2003) Human insulin resistance: the role of glucocorticoids. Diabetes Obes Metab 5:5–12

    Article  PubMed  CAS  Google Scholar 

  48. Amatruda JM, Danahy SA, Chang CL (1982) The effect of glucocorticoids on insulin-stimulated lipogenesis in primary cultures of rat hepatocytes. Biochem J 212:135–141

    Google Scholar 

  49. Probst I, Jungermann K (1983) Short-term regulation of glycolysis by insulin and dexamethasone in cultured rat hepatocytes. Eur J Biochem 135:151–156

    Article  PubMed  CAS  Google Scholar 

  50. Fleig WE, Nöther-Fleig G, Steudter S, Enderle D, Ditschuneit H (1985) Regulation of insulin binding and glycogenolysis by insulin and dexamethasone in culture hepatocytes. Biochem Biophys Acta 847:352–361

    Article  PubMed  CAS  Google Scholar 

  51. Mokuda O, Sakamoto Y, Ikeda T, Mashiba H (1991) Sensitivity and responsiveness of glucose output to insulin in isolated perfused liver from dexamethasone-treated rats. Horm Metab Res 23:53–55

    Article  PubMed  CAS  Google Scholar 

  52. Silva JCR, Rocha MFG, Lima AAM, Brito GAC, de Menezes DB, Rao VSN (2000) Effects of pentoxifylline and nabumetone on the serum levels of IL-1β and TNFα in rats with adjuvant arthritis. Inflamm Res 49:14–19

    Article  PubMed  CAS  Google Scholar 

  53. Broetto-Biazon AC, Ishii-Iwamoto EL, Kelmer-Bracht AM, Bracht A (2006) Low doses of tumor necrosis factor alpha and interleukin 1 beta diminish hepatic gluconeogenesis from alanine in vivo. Basic Clin Pharmacol Toxicol 99:335–339

    Article  PubMed  Google Scholar 

  54. Rebuffe-Scrive M, Walsh UA, McEwen B, Rodin J (1992) Effect of stress and exogenous glucocorticoid on regional fat distribution and metabolism. Physiol Behav 52:583–590

    Article  PubMed  CAS  Google Scholar 

  55. Tataranni PA, Larson DE, Sniker S, Young JB, Flatt JP, Ravussi E (1996) Effects of glucocorticoids on energy metabolism and food intake in human. Am J Physiol 271:E317–E325

    PubMed  CAS  Google Scholar 

  56. Green PK, Wilkinson CW, Woods SC (1992) Intraventricular corticosterone increases the rate of body weight gain in underweight adrenalectomized rats. Endocrinology 130:269–275

    Article  PubMed  CAS  Google Scholar 

  57. Obeid OA, Boukarim LK, Al Awar RM, Hwalla N (2006) Postprandial glycogen and lipid synthesis in prednisole-treated rats maintained on high-protein diets with varied carbohydrate levels. Nutrition 22:288–294

    Article  PubMed  CAS  Google Scholar 

  58. Odebra BR, Bates PC, Minard DJ (1983) Time course of the effect of catabolic doses of corticosterone on protein turnover in rat skeletal muscle and liver. Biochem J 214:617–627

    Google Scholar 

  59. Mokuda O, Sakamoto Y (1997) Increased glucagon action on lactate gluconeogenesis in perfused liver of dexamethasone-treated rats. Biochem Mol Med 62:65–69

    Article  PubMed  CAS  Google Scholar 

  60. Dumas JF, Simard G, Roussel D, Douay O, Foussard F, Malthiery Y, Ritz P (2003) Mitochondrial energy metabolism in a model of undernutriton induced by dexamethasone. Br J Nutr 90:969–977

    Article  PubMed  CAS  Google Scholar 

  61. Roussel D, Dumas JF, Augeraud A, Douay O, Foussard F, Malthhéry Y, Simard G, Titz P (2003) Dexamethasone treatment specifically increases the basal proton conductance of rat liver mitochondria. FEBS Lett 54:75–79

    Article  CAS  Google Scholar 

  62. Woodward CJH, Emery PW (1989) Energy balance in rats given chronic hormone treatment. 2. effects of corticosterone. Br J Nutr 61:445–452

    Article  PubMed  CAS  Google Scholar 

  63. Minet-Quinard R, Moinard C, Walrand S, Villie F, Normand B, Vasson NP, Chopineau J, Cynober L (2000) Induction of a catabolic state in rats by dexamethasone: dose or time dependency? J Parenter Enteral Nutr 24:30–36

    CAS  Google Scholar 

  64. Roubenoff R, Freemann LM, Smith DE, Abad LW, Dinarello CA, Kehayias JJ (1997) Adjuvant arthritis as a model of inflammatory cachexia. Arthritis Rheum 40:534–539

    Article  PubMed  CAS  Google Scholar 

  65. Hamada K, Vannier E, Smith DE, Abad LW, Roubenoff R (2000) Inflammatory cachexia induces sarcoactive cytokine gene expression in a rat model of adjuvant arthritis. FASEP J 14:A572

    Google Scholar 

  66. Roubenoff R, Roubenoff RA, Cannon JG, Kehayias JJ (1994) Cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J Clin Invest 93:2379–2386

    PubMed  CAS  Google Scholar 

  67. Bendele AM, Chlipala ES, Schereer J, Frazier J, Sennello G, Rich WJ, Edwards CK III (2000) Combination benefit of treatment with the cytokine inhibitors interleukin-1 receptor antagonist and PEGylated soluble tumor necrosis factor receptor type I in animal models of rheumatoid arthritis. Arthritis Rheum 43:2648–2659

    Article  PubMed  CAS  Google Scholar 

  68. Fathalla B, Hamada K, Vannier E, Smith D, Edwards C, Roubenoff R (2004) Effects of aging and cytokine blockade on inflammatory cachexia. Clin Exp Rheumatol 22:85–90

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Conselho Nacional de Pesquisa Científica e Tecnológica (CNPq), Programa de Núcleos de Excelência (PRONEX) do Ministério de Ciência e Tecnologia and Fundação Araucária do Estado do Paraná.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emy L. Ishii-Iwamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caparroz-Assef, S.M., Bersani-Amado, C.A., Kelmer-Bracht, A.M. et al. The metabolic changes caused by dexamethasone in the adjuvant-induced arthritic rat. Mol Cell Biochem 302, 87–98 (2007). https://doi.org/10.1007/s11010-007-9430-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9430-9

Keywords

Navigation