Skip to main content
Log in

Succinic acid monoethyl ester, a novel insulinotropic agent: Effect on lipid composition and lipid peroxidation in streptozotocin–nicotin-amide induced type 2 diabetic rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Succinic acid monoethyl ester (EMS) is recently proposed as an insulinotropic agent for the treatment of non-insulin dependent diabetes mellitus. Oxidative stress has been suggested to be a contributory factor in the development and complications of diabetes. In the present study the effect of EMS and Metformin on plasma glucose, insulin, serum and tissue lipid profile, lipoproteins and lipid peroxidation in streptozotocin–nicotinamide induced type 2 diabetic model was investigated. The carboxylic nutrient EMS was administered intraperitonially (8 µmol/g body weight) to streptozotocin diabetic rats for 30 days. The levels of thiobarbituric acid reactive substances (TBARS) and hydroperoxides in liver and kidney and serum and tissue lipids [cholesterol, triglycerides, phospholipids and free fatty acids] and very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C), were significantly increased in diabetic rats, whereas the levels of high-density lipoprotein-cholesterol (HDL-C) and antiatherogenic index (AAI) (ratio of HDL to total cholesterol) were significantly decreased. The effect of EMS was compared with metformin, a reference drug. Treatment with EMS and metformin resulted in a significant reduction of plasma glucose with increase plasma insulin in diabetic rats. EMS also resulted in a significant decrease in serum and tissue lipids and lipid peroxidation products. These biochemical observations were supplemented by histopathological examination of liver and kidney section. Our results suggest the possible antihyperlipidemic and antiperoxidative effect of EMS apart from its antidiabetic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baynes YW, Thorpe R (1999) Role of oxidative stress in diabetic complications. Diabetes 48:1–9

    PubMed  CAS  Google Scholar 

  2. Robertson RP (2004) Chronic oxidative stress: a central mechanism for glucose toxicity in pancreatic islet beta cell in diabetes. J Biol Chem 279:42351–42354

    Article  PubMed  CAS  Google Scholar 

  3. Brown WV (1994). Lipoprotein disorders in diabetes mellitus. Med Clin N Am 78: 143–161

    PubMed  CAS  Google Scholar 

  4. Betteridge J (1997) Lipid disorders in diabetes mellitus. In: Pickup JC, Williams G (eds) Text Book of Diabetes, Second ed. Blackwell Science, London, pp. 1–35

    Google Scholar 

  5. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes; Estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    PubMed  Google Scholar 

  6. Sochar M, Baquer NZ, Mclean P (1985) Glucose under utilization in diabetes. Comparative studies on the changes in the activities of enzymes of glucose metabolism in rat kidney and liver. Mol Physiol 7:51–68

    Google Scholar 

  7. Morel DW, Chisolm GM (1989) Antioxidant treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity. J Lipid Res 30:1827–1834

    PubMed  CAS  Google Scholar 

  8. Seifter S, England S (1982) Energy metabolism. In: Arias I, Papper M, Schacter D, et al. (eds) The Liver; Biology and Pathology. New York, Reven Press, pp. 219–249

    Google Scholar 

  9. Picton SF, Flatt PR, Mcclenghan NH (2001) Differntial acute and long-term actions of succinic acid monomethyl ester exposure on insulin secreting BRAIN-BD 11 cells. Int J Exp Diabetes Res 2:19–27

    PubMed  CAS  Google Scholar 

  10. Akkan AG, Malaisse WJ (1993) Protective effect of succinic acid monomethyl ester aginst streptozotocin induced diabete mellitus. Med Sci Res 214:467

    Google Scholar 

  11. Ishihara H, Wang H, Drewes LR, Wollheim CB (1999) Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in beta cells. J Clin Invest 104:1621–1629

    Article  PubMed  CAS  Google Scholar 

  12. Ainscow E K, Zhao C, Rutter GA (2000) Acute over expression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion. Diabetes 49:1149–1155

    PubMed  CAS  Google Scholar 

  13. Alarcon C, Wicksteed B (2002) Succinate is a preferential metabolic stimulus-coupling signal for glucose-induced proinsulin biosynthesis translation. Diabetes 51:2496–2504

    PubMed  CAS  Google Scholar 

  14. Zawalich WS, Zawalich KC (1992) Biochemical mechanisms involved in monomethyl succinate-induced insulin secretion. Endocrinology 131: 649–654

    Article  PubMed  CAS  Google Scholar 

  15. Ladriere L, Louchami K, Vinamber C, Kadiata MM, Jijakli H, Villanueva Penacarrillo ML, Valverde I, Malaisse WJ (1998) Insulinotropic action of the monoethyl ester of succinic acid. Gen Pharm 31: 377–383

    Article  CAS  Google Scholar 

  16. Juan A, Martinez G, Maria L, Penacarrillo V, Valverde I, Bjorkling F, Malaisse WJ (1998) Potentiation of the insulinotropic and hypoglycemic action of gliquidone by succinic acid esters. Eur J Pharmacol 325:65–68

    Google Scholar 

  17. Uchigata Y, Yamamoto H, Nagai H, Okamoto H (1983) Effect of poly (ADP-ribose) synthetase inhibitor administration to rats before and after injection of alloxan and streptozotocin on islet proinsulin synthesis. Diabetes 32: 316–318

    PubMed  CAS  Google Scholar 

  18. Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, Novelli M, Ribes G (1998) Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47: 224–229

    PubMed  CAS  Google Scholar 

  19. Novelli M, Fabregat ME, Fernandez-Alvarez J, Gomis R, Masiello P (2001) Metabolic and functional studies on isolated islets in a new rat model of type 2 diabetes. Mol Cell Endocrinol 175: 57–66

    Article  PubMed  CAS  Google Scholar 

  20. Reusch JE (1998) Focus on insulin resistance in type-2 diabetes: therapeutic implications. Diabetes Educ 24:188–193

    PubMed  CAS  Google Scholar 

  21. Lebovitz HE (2001) Oral therapies for diabetic hyperglycemia. Endocrinol Metab Clin N 30:909–933

    Article  CAS  Google Scholar 

  22. Bailey CJ, Turner RC (1996) Metformin. New Engl J Med 334: 574–579

    Article  PubMed  CAS  Google Scholar 

  23. Setter SM, Iltz JL, Thams J, Campbell RK (2003) Metformin hydrochloride in the treatment of type-2 diabetes mellitus: a clinical review with a focus on dual therapy. Clin Therap 25: 2991–3026

    Article  CAS  Google Scholar 

  24. Pari L, Saravanan R (2005) Succinic acid monoethyl ester and metformin regulates carbohydrate metabolic enzymes and improves glycemic control in streptozotocin–nicotinamide induced type 2 diabetic rats. Iranian J Pharmacol Therapeut 4:132–135

    CAS  Google Scholar 

  25. Yanardag R, Ozsoy-Sacan O, Bolkent S, Orak H, Karabulut-Bulan O (2005) Protective effects of metformin treatment on the liver injury of streptozotocin-diabetic rats. Hum Exp Toxicol 24: 129–135

    Article  PubMed  CAS  Google Scholar 

  26. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–27

    CAS  Google Scholar 

  27. Niehius WG, Samuelsson D (1968) Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 6: 126–130

    Article  Google Scholar 

  28. Jiang ZY, Hunt JV, Wolft SD (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 202: 384–389

    Article  PubMed  CAS  Google Scholar 

  29. Folch J, Lees M, Solane SGH (1957) A simple method for isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  30. Zlatkis A, Zak B, Boyle GJ (1953) A method for the determination of serum cholesterol. J Clin Med 41:486–492

    CAS  Google Scholar 

  31. Burnstein M, Scholnic MR, Mortin R (1970) Rapid method of isolation of lipoprotein from human serum by precipitation of polyanion. J Lipid Res 11: 583–587

    Google Scholar 

  32. Friedward WT, Levy R, Fradrickson DS (1972) Estimation of concentration of low-density lipoprotein cholesterol in plasma without the use of preparative ultracentrifuge. Clin Chem 19: 449–452

    Google Scholar 

  33. Guido S, Joseph T (1992) Effect of chemically different calcium antagonists on lipid profile in rats fed on a high fat diet. Indian J Exp Biol 30: 292–294

    PubMed  CAS  Google Scholar 

  34. Foster JB, Dunn RT (1973) Stable reagents for determination of serum triglyceride by colorimetric condensation method. Clin Chim Acta 19:338–340

    CAS  Google Scholar 

  35. Zilversmit BB, Davis AK (1950) Micro determination of plasma phospholipids by TCA precipitation. J Lab Clin Med 35:155–160

    PubMed  CAS  Google Scholar 

  36. Fiske CH, Subbarow J (1925) The colorimetric determination of Phosphorus. J Biol Chem 66: 375–400

    CAS  Google Scholar 

  37. Falholt K, Falholt W, Lund B (1973) An assay colorimetric method for routine determination of free fatty acids in plasma. Clin Chim Acta 46: 105–111

    Article  PubMed  CAS  Google Scholar 

  38. Philipp B, Shapiro DJ (1979) Improved methods for the assay and activation of 3-hydroxy-3-methylglutaryl-co-enzyme A reductase. J Lipid Res 20: 588–593

    PubMed  CAS  Google Scholar 

  39. Duncan BD (1957) Multiple range test for correlated and heteroscedastic means. Biometrics 13:359–364

    Article  Google Scholar 

  40. Gandhi HR (2001) Diabetes and coronary artery disease: importance of risk factors. Cardiol Today 1: 31–34

    Google Scholar 

  41. Grudy MS, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV (1999) Diabetes and cardiovascular disease. A statement for healthcare professionals from the American heart association. Circulation 100: 1134–1146

    Google Scholar 

  42. Al-Shamaony L, Al-Khazraji SM, Twaiji IA (1994) Hypoglycemic effect of Artemisia herba alba. II. Effect of a valuable extract on some blood parametes in diabetic animals. J Ethnopharmacol 43:167–171

    Article  PubMed  CAS  Google Scholar 

  43. Rajalingam R, Srinivasan N, Govindarajulu P (1993) Effect of alloxan-induced diabetes on lipid profiles in renal cortex and medulla of mature albino rats. Indian J Exp Biol 31: 577–579

    PubMed  CAS  Google Scholar 

  44. Stone G, Van Thiel DH (1985) Diabetes mellitus, the liver. Seminar Liver 5: 8–28

    Article  CAS  Google Scholar 

  45. Ashokkumar N, Pari L, Manimekalai A, Selvaraju K (2005) Effect of N-benzoyl-D-phenylalanine on streptozotocin induced changes in the lipids and lipoprotein profile in rats. J Pharm Pharmacol 57:359–366

    Article  PubMed  CAS  Google Scholar 

  46. Mendez JD, Balderas F (2001) Regulation of hyperglycemia and dyslipidemia by exogenous L-arginine in diabetic rats. Biochimie 83:453–458

    Article  PubMed  CAS  Google Scholar 

  47. Eddouks M, Lemhadri A, Michel JB (2005) Hypolipidemic activity of aqueousextract of Capparis spinosa L. in normal and diabetic rats. J Ethnopharmacol 98:345–350

    Article  PubMed  CAS  Google Scholar 

  48. Sharma SB, Nasir A, Prabhu KM, Murthy PS, Dev G (2003) Hypoglycaemic and hypolipidemic effect of ethanolic extract of seeds of Eugenia jambolana in alloxan-induced diabetic rabbits. J Ethnopharmacol 85:201–206

    Article  PubMed  CAS  Google Scholar 

  49. Slater HL, Packard CJ, Bicker S, Shephered J (1980) Effects of cholestyramine on receptor mediated plasma clearance and tissue uptake of human low dansity lipoprotein in the rabbit. J Biol Chem 255:10210–10213

    PubMed  CAS  Google Scholar 

  50. Laakso M, Lehto S, Penttila I, Pyorala K (1993) Lipids and lipoproteins predicting coronary heart disease mortality and morbidity in patients with non-insulin-dependent diabetes mellitus. Circulation 88:1421–1430

    PubMed  CAS  Google Scholar 

  51. National Cholesterol Education Program Expert Panel: Circulation 89: 1329, 1994

    Google Scholar 

  52. Kudchodkar BJ, Lee JC, Lee SM, DiMarco NM, Lacko AG (1988) Effect of dietary protein on cholesterol homeostasis in diabetic rats. J Lipid Res 29: 1272–1287

    PubMed  CAS  Google Scholar 

  53. Bruan JEA, Severson DL (1992) Lipoprotein lipase release from cardiac myocytes is increased by decavandate but not insulin. Am J Physiol 262: E663–E670

    Google Scholar 

  54. Lopes-Virella MF, Whitmann HJ, Mayleld PK, Loadhott CB, Colwell JA (1983) Effect of metabolic control on lipid, lipoprotein and apolipoprotein levels in 55 insulin-dependent diabetic patients: a longitudinal study. Diabetes 32: 20–25

    PubMed  CAS  Google Scholar 

  55. Bopanna KN, Kannan J, Sushma G, Balaraman R, Rathod SP (1997) Antidiabetic and antihyperlipidemic effect of neem seed, kernal powder on streptozotocin–nicotinamide diabetic rabbits. Indian J Pharmacol 29: 162–167

    CAS  Google Scholar 

  56. Dario G, Antonio C, Giuseppe P (1996) Oxidative stress and diabetic complications. Diabetes Care 19:257–267

    Google Scholar 

  57. Cohn RM, Roth KS (1996) Lipid and lipoprotein metabolism. Biochemistry and disease. Williams and Wilkins Publishers, Baltimore p. 280

    Google Scholar 

  58. Ahmed M, Shikha HA, Sadhu SK, Rahman MT, Datta BK (2001) Diuretic, and anti-inflammatory principle from Scoparia dulcis. Pharmazie 56: 657–660

    PubMed  CAS  Google Scholar 

  59. Pari L, Ashokkumar N (2005) Effect of N-benzoyl-d-phenyalanine on lipid profile in liver of neonatal streptozotocin diabetic rats. Fund Clin Pharmacol 19:563–568

    Article  CAS  Google Scholar 

  60. Mendez JD, Balderas FL (2006) Inhibition by L-arginine and spermidine of hemoglobin glycation and lipid peroxidation in rats with induced diabetes. Biomed Pharmacother 60: 26–31

    Article  PubMed  CAS  Google Scholar 

  61. Duarte AI, Santos MS, Seica R, Oliveira CR (2004) Oxidative stress affects synaptosomal gamma-aminobutyric acid and glutamate transport in diabetic rats: the role of insulin. Diabetes 53:2110–2116

    PubMed  CAS  Google Scholar 

  62. Saravanan R, Pari L (2006) Succinic acid monoethyl ester prevents oxidative stress in sterptozotocin–nicotinamide induced type2 diabetic rats. J Basic Clin Physiol Pharmacol 17: 115–132

    PubMed  CAS  Google Scholar 

  63. Mano T, Shinohara R, Nagasaka A, Nakagawa H, Uchimura K, Hayashi R, Nakano I, Tsugawa T, Watanabe F, Kobayashi T, Fujiwara K, Nakai A, Itoh M (2000) Scavenging effect of nicorandil on free radicals and lipid peroxide in streptozotocin-induced diabetic rats. Metabolism 49:427–431

    Article  PubMed  CAS  Google Scholar 

  64. Sato Y, Hotto N, Sakamoto N, Matsuoka S, Ohishi N, Yagi K (1979) Lipid peroxide level in plasma of diabetic patients. Biochem Med 21: 104–107

    Article  PubMed  CAS  Google Scholar 

  65. Hunt JV, Smith CCT, Wolff SP (1990) Autooxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 39: 1420–1424

    PubMed  CAS  Google Scholar 

  66. Kwiatkowsha S, Piasecka G, Zieba M, Piotrowski W, Nowak D (1999) Increased serum concentrations of conjugated dienes and malondialdehyde in patients with pulmonary tuberculosis. Respiratory Med 93: 272–276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leelavinothan Pari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saravanan, R., Pari, L. Succinic acid monoethyl ester, a novel insulinotropic agent: Effect on lipid composition and lipid peroxidation in streptozotocin–nicotin-amide induced type 2 diabetic rats. Mol Cell Biochem 296, 165–176 (2007). https://doi.org/10.1007/s11010-006-9312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9312-6

Keywords

Navigation