Skip to main content
Log in

Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Proline oxidase (POX), a mitochondrial inner-membrane protein, catalyzes the rate-limiting oxidation of proline to pyrroline- 5-carboxylate (P5C). Previously we showed that overexpression of POX is associated with generation of reactive oxygen species (ROS) and apoptosis in POX-inducible colorectal cancer cells, DLD-1.POX. We also showed expression of mitochondrial MnSOD partially blunts POX-induced ROS generation and apoptosis. To further investigate the molecular basis of POX-induced apoptosis, we utilized the DLD-1.POX cells to show that cells overproducing POX exhibit an L-proline-dependent apoptotic response. The apoptotic effect is specific for L-proline, detectable at 0.2 mM, maximal at 1 mM, and occurs during 48–72 h following the addition of L-proline to cells with maximally induced POX. The apoptotic response is mitochondria-mediated with release of cytochrome c, activation of caspase-9, chromatin condensation/DNA fragmentation, and cell shrinkage. We conclude that in the presence of proline, high POX activity is sufficient to induce mitochondria-mediated apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phang JM, Hu CA, Valle D 2001 Disorders of proline and hydroxproline metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic and Molecular Bases of Inherited Disease. McGraw Hill Press, New York, pp 1821–1838

    Google Scholar 

  2. Johnson AB, Strecker JH 1962 The interconversion of glutamic acid and proline. IV. The oxidation of proline by rat liver mitochondria J Biol Chem 237: 1876–1882

    PubMed  CAS  Google Scholar 

  3. Adams E, Frank L 1980 Metabolism of proline and the hydroxyprolines Annu Rev Biochem 49: 1005–1061

    Article  PubMed  CAS  Google Scholar 

  4. Phang JM 1985 The regulatory functions of proline and pyrroline-5-carboxylic acid Curr Top Cell Regul 25: 91–132

    PubMed  CAS  Google Scholar 

  5. Liu Y, Borchert GL, Donald SP, Surazynski A, Hu CA, Weydert CJ, Oberley LW, Phang JM 2005 MnSOD inhibits proline oxidase-induced apoptosis in colorectal cancer cells Carcinogenesis 26: 1335–1342

    Article  PubMed  CAS  Google Scholar 

  6. Bender HU, Almashanu S, Steel G, Hu CA A, Lin WW, Willis A, Pulver A, Valle D 2005 Functional consequences of PRODH missense mutations Am J Hum Genet 76: 409–420

    Article  PubMed  CAS  Google Scholar 

  7. Lee YH, Nadaraia S, Gu D, Becker DF, Tanner JJ 2003 Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein Nat Struct Biol 10: 109–114

    Article  PubMed  CAS  Google Scholar 

  8. Donald SP, Sun XY, Hu CA, Yu J, Mei JM, Valle D, Phang JM 2001 Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species Cancer Res 61: 1810–1815

    PubMed  CAS  Google Scholar 

  9. Maxwell SA, Davis GE 2000 Differential gene expression in p53-mediated apoptosis-resistant vs. apoptosis-sensitive tumor cell lines Proc Natl Acad Sci U S A 97: 13009–13014

    Article  PubMed  CAS  Google Scholar 

  10. Maxwell SA, Rivera A 2003 Proline oxidase induces apoptosis in tumor cells, and its expression is frequently absent or reduced in renal carcinomas J Biol Chem 278: 9784–9789

    Article  PubMed  CAS  Google Scholar 

  11. Zhu J, Jiang J, Zhou W, Zhu K, Chen X 1999 Differential regulation of cellular target genes by p53 devoid of the PXXP motifs with impaired apoptotic activity Oncogene 18: 2149–2155

    Article  PubMed  CAS  Google Scholar 

  12. Raha S, Robinson RH 2001 Miotchondria, oxygen free radicals, and apoptosis Am J Med Genet 106: 62–70

    Article  PubMed  CAS  Google Scholar 

  13. Martindale JL, Holbrook NJ 2002 Cellular response to oxidative stress: signaling for suicide and survival J Cell Physiol 192: 1–15

    Article  PubMed  CAS  Google Scholar 

  14. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B 1997 A model for p53-induced apoptosis Nature 389: 300–305

    Article  PubMed  CAS  Google Scholar 

  15. Johnson TM, Yu ZX, Ferrans VJ, Lowenstein RA, Finkel T 1996 Reactive oxygen species are downstream mediators of p53-dependent apoptosis Proc Natl Acad Sci USA 93: 1848–1852

    Google Scholar 

  16. Vogelstein B, Lane D, Levine AJ 2000 Surfing the p53 network Nature 408: 307–310

    Article  PubMed  CAS  Google Scholar 

  17. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Lieberman DA, Hoffman B, Reed JC 1994 Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo Oncogene 9: 1799–1805

    PubMed  CAS  Google Scholar 

  18. Miyashita T, Reed JC 1995 Tumor suppressor p53 is a activator of the human bax gene Cell 80: 293–299

    Article  PubMed  CAS  Google Scholar 

  19. Kirkland RA, Franklin JL 2003 Bax, reactive oxygen, and cytochrome c release in neuronal apoptosis Antioxid Redox Signal 5: 589–596

    Article  PubMed  CAS  Google Scholar 

  20. Kirkland RA, Windelborn JA, Kasprzak JM, Franklin JL 2002 A Bax-induced pro-oxidant state is critical for cytochrome c release during programmed neuronal death J Neurosci 22: 6480–6490

    PubMed  CAS  Google Scholar 

  21. Liu Z, Lu H, Shi H, Du Y, Yu J. Gu S, Chen X, Liu KJ, Hu CAA 2005 PUMA overexpression induces ROS generation and proteasome-mediated stathmin degradation in colorectal cancer cells Cancer Res 65: 1647–1654

    Article  PubMed  CAS  Google Scholar 

  22. Rivera A, Maxwell SA 2005 The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway J Biol Chem 280: 29346–29354

    Article  PubMed  CAS  Google Scholar 

  23. Liu Z, Lu H, Jiang Z, Pastuszyn A, Hu CAA 2005 Apolipoprotein L6, a novel pro-apoptotic BH3-only protein, induces mitochondria-mediated apoptosis in cancer cells Mol Can Res 3: 21–31

    CAS  Google Scholar 

  24. Phang JM, Downing SJ, Valle DL, Kowaloff EM 1975 A radioisotopic assay for proline oxidase activity J Lab Clin Med 85: 312–317

    PubMed  CAS  Google Scholar 

  25. Ferri KF, Kroemer G 2001 Organelle-specific initiation of cell death pathways Nat Cell Biol 3: E255–E263

    Article  PubMed  CAS  Google Scholar 

  26. Liu Y, Borchert GL, Syrazynski A, Hu C-A, Phang JM 2006 Proline oxidase activates both intrinsic and extrinsic pathways for apoptosis: the role of ROS/superoxides, NFAT and MEK/ERK signaling. Oncogene EPub April 17

  27. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG 2005 Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis Cell 29: 221–233

    Article  Google Scholar 

  28. Akhand AA, Du J, Liu W, Hossain K, Miyata T, Nagase F, Kato M, Suzuki H, Nakashima I 2002 Redox-linked cell surface-oriented signaling for T-cell death Antioxid Redox Signal 4: 445–454

    Article  PubMed  CAS  Google Scholar 

  29. Butow RA, Avadhani NG 2004 Mitochondrial signaling: the retrograde response Mol Cell 14: 1–15

    Article  PubMed  CAS  Google Scholar 

  30. Raha S. Robinson BH 2001 Mitochondria, oxygen free radicals, and apoptosis Am J Med Genet 106: 62–70

    Article  PubMed  CAS  Google Scholar 

  31. Kowaloff EM, Granger AS, Phang JM 1976 Alterations in proline metabolic enzymes with mammalian development Metabolism 25: 1087–1094

    Article  PubMed  CAS  Google Scholar 

  32. Downing SJ, Phang JM, Kowaloff EM, Valle D, Smith RJ 1977 Proline oxidase in cultured mammalian cells J Cell Physiol 91: 369–376

    Article  PubMed  CAS  Google Scholar 

  33. Blake RL 1972 Animal model for hyperprolinaemia: deficiency of mouse proline oxidase activity Biochem J 129: 987–989

    PubMed  CAS  Google Scholar 

  34. Blake RL, Hall JG, Russell ES: Mitochondrial proline dehydrogenase deficiency in hyperprolinemic Biochem. Genet 14: 739–757, 1976

    Google Scholar 

  35. Gogos JA, Santha M, Takacs Z, Beck KD, Luine V, Lucas LR, Nadler JV, Karayiorgou M 1999 The gene encoding proline dehydrogenase modulates sensorimotor gating in mice Nat Genet 21: 434–439

    Article  PubMed  CAS  Google Scholar 

  36. Geraghty MT, Vaughn D, Nicholson AJ, Lin WW, Jimenez-Sanchez G, Obie C, Flynn MP, Valle D, Hu CA 1998 Mutations in the Delta1-pyrroline 5-carboxylate dehydrogenase gene cause type II hyperprolinemia Hum Mol Genet 7: 1411–1415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sandy Muscelli for manuscript preparation. This work was supported in part by NCI-RO1 (1 RO1 CA106644-01 to C.-A.A. Hu) and by the Intramural program of the NCI, NIH (to J.M. Phang). David Valle is an Investigator in the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Phang.

Additional information

These authors contribute equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Ca.A., Donald, S.P., Yu, J. et al. Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis. Mol Cell Biochem 295, 85–92 (2007). https://doi.org/10.1007/s11010-006-9276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9276-6

Keywords

Navigation