Skip to main content

Advertisement

Log in

Chronic heat-shock treatment driven differentiation induces apoptosis in Leishmania donovani

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The present study investigates the role of apoptosis in the regulation of cell numbers of Leishmania donovani during the in vitro differentiation of promastigote stage to amastigote stage in axenic conditions. We report that apoptosis is induced in Leishmania donovani due to chronic heat-shock treatment of 37 °C that also mediates the differentiation of promastigotes to amastigotes. This is characterized by the fragmentation of DNA, blebbing in the parasite cell membrane, nuclear condensation, formation of preapoptotic bodies and involvement of Ca++ in the apoptotic process. The flowcytometric analysis shows an early and steep rise in percentage apoptotic nuclei till 48-hour stage of differentiation and then a gradual decline, suggesting synergistic action of Ca++ ATPase and probably Hsp70. Hsp70 might be rescuing cells from apoptosis in the death signaling pathway. Incubation of the culture with Ca++ chelator EGTA (1 mM) brings down the percentage of apoptotic nuclei considerably showing thereby that calcium is needed for the process of cell death here that occurs by apoptosis. The survival of the infective individuals appears to be decided by the parasite in the early stages of its differentiation. Our studies show the potential of the physiological temperature of 37 °C in inducing apoptosis in Leishmania donovani and the therapeutic use it can be put to.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handman E: Cell Biology of Leishmania. Adv Parasitol 44: 1–39, 1999

    Article  PubMed  CAS  Google Scholar 

  2. Convit J, Pinardi ME, Rondon AJ: Diffuse cutaneous leishmaniasis: a disease due to an immunological defect of the host. Trans R Soc Trop Med Hyg 66(4): 603–610, 1972

    Article  PubMed  CAS  Google Scholar 

  3. Wu WK, Tesh RB: Genetic factors controlling susceptibility to Leishmania major infection in the sand fly Phlebotomus papatasi (Diptera: Psychodidae). Am J Trop Med Hyg 42(4): 329–334, 1990

    PubMed  CAS  Google Scholar 

  4. Blackwell JM: Genetic susceptibility to leishmanial infections: studies in mice and man. Parasitology 112 (Suppl): S67–S74, 1996

    Google Scholar 

  5. WHO: Weekly Epidemiological Record 77, 365–370, 2002

    Google Scholar 

  6. WHO: The World Health Report 192–197, 2002

  7. Cornillon S, Foa C, Davoust J, Buonavista N, Gross JD, Goldstein P: Programmed cell death in Dictyostelium. J Cell Sci 107(Pt 10): 2691–2704, 1994

    PubMed  CAS  Google Scholar 

  8. Naito T, Kusano K, Kobayashi I: Selfish behaviour of restriction modification systems. Science 267(5199): 897–899, 1995

    PubMed  CAS  ADS  Google Scholar 

  9. Ameisen JC: The origin of programmed cell death. Science 272(5266): 1278–1279, 1996

    PubMed  CAS  ADS  Google Scholar 

  10. Moreira ME, Del Portillo HA, Milder RV, Balanco JM, Barcinski MA: Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania (Leishmania) amazonensis. J Cell Physiol 167(2): 305–313, 1996

    Article  PubMed  CAS  Google Scholar 

  11. Rao RR, Mahajan RC, Ganguly NK: Modified media for in vitro cultivation of Leishmania donovani promastigotes: a comparative study. Bull PGI 18: 125–128, 1984

    Google Scholar 

  12. Takano YS, Harmon BV, Kerr JF: Apoptosis induced by mild hyperthermia in human and murine tumour cell lines: af study using electron microscopy and DNA gel electrophoresis. J Pathol 163(4): 329–336, 1991

    Article  PubMed  CAS  Google Scholar 

  13. Sambrook J, Fritch EF, Maniatis T: Molecular cloning: a laboratory manual, IInd edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 2: 16–19, 1989

    Google Scholar 

  14. Zhao W, Wu M, Shen Y, Zhai Z: Analysis of nuclear apoptotic process in a cell free system. Cell Mol Life Sci 58(2): 298–306, 2001

    Article  PubMed  CAS  Google Scholar 

  15. Ormerod, MG: Analysis of DNA-general methods. In ‘Flow cytometry: A Practical Approach (ed. Ormerod, M. G.)’: 83–97, 2000

  16. Cohen, JJ: Apoptosis Immunol Today 14(3):126–130, 1993

    Google Scholar 

  17. Ellis RE, Yuan JY, Hotvitz HR: Mechanisms and functions of cell death. Annu Rev Cell Biol 7: 663–698, 1991

    Article  PubMed  CAS  Google Scholar 

  18. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H: Genetic control of programmed cell death in Drosophila. Science 264(5159): 677–683, 1994

    PubMed  CAS  ADS  Google Scholar 

  19. Vardi A, Berman-Frank, I, Rozenberg, T, Hadas, O, Kaplan, A, Levine, L: Programmed cell death in the dinoflagellate Peridinium gatunense is mediated by CO2 limitation, oxidative stress. Curr Biol 9(18): 1061–1064, 1999

    Article  PubMed  CAS  Google Scholar 

  20. Christensen ST, Wheatly DN, Ramussen MI, Ramussen L: Mechanisms controlling death, survival and proliferation in model unicellular eukaryote Tetrahymena thermophila. Cell Death Differ 2: 301–308, 1995

    PubMed  CAS  Google Scholar 

  21. Madeo F, Frohlich E, Frohlich KU: A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139(3): 729–734, 1997

    Article  PubMed  CAS  Google Scholar 

  22. Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU: Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145(4): 757–767, 1999

    Article  PubMed  CAS  Google Scholar 

  23. Frohlich KU, Madeo F: Apoptosis in yeast-a monocellular organism exhibits altruistic behaviour. FEBS Lett 473(1): 6–9, 2000

    Article  PubMed  CAS  Google Scholar 

  24. Nasirudeen AMA, Singh M, Yap EH, Tan KSW: Blastocystis hominis: evidence for caspase-3-like activity in cells undergoing programmed cell death. Parasitol Res 87(7): 559–565, 2001

    Article  PubMed  CAS  Google Scholar 

  25. Welburn SC, Lillico S, Murphy NB: Programmed cell death in procyclic form Trypanosoma brucei rhodesiense-identification of differentially expressed genes during Con A induced death. Mem Inst Oswaldo Cruz 94(2): 229–234, 1999

    Article  PubMed  CAS  Google Scholar 

  26. Ridgley EL, Xiong Z, Ruben L: Reactive oxygen species activate a Ca++ - dependent cell death pathway in the unicellular organism Trypanosoma brucei brucei. Biochem J 340(Pt 1): 33–40, 1999

    Article  PubMed  CAS  Google Scholar 

  27. Piacenza L, Peluffo G, Radi R: l-arginine-dependent suppression of apoptosis in Trypanosoma cruzi: contribution of nitric oxide and polyamine pathways. Proc Nat Acad Sci 98(13): 7301–7306, 2001

    Article  PubMed  CAS  ADS  Google Scholar 

  28. Das M, Mukherjee SB, Shaha C: Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Sci 114(Pt 13): 2461–2469, 2001

    PubMed  CAS  Google Scholar 

  29. Arnoult D, Akarid K, Grodet A, Petit PX, Estsaquier J, Amiesen JC: On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation, mitochondrion permeabilisation. Cell Death Differ 9(1): 65–81, 2002

    Article  PubMed  CAS  Google Scholar 

  30. Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi, HL: Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death and Differ 9(1): 53–64, 2002

    Article  CAS  MATH  Google Scholar 

  31. Trump BF, Berezesky IK: Calcium mediated cell injury and cell-death. FASEB J 9(2): 219–228, 1995

    PubMed  CAS  Google Scholar 

  32. Landry J, Crête P, Lamarche S, Chrêtien P: Activation of Ca2+ dependent processes during heat shock: role in cell thermoresistance. Radiat Res 113(3): 426–436, 1988

    PubMed  CAS  Google Scholar 

  33. Oberhammer F, Bursch W, Tiefenbacher R, Froschl G, Pavelka M, Purchio T, Schulte-Hermann R: Apoptosis is induced by transforming growth factor-beta 1 within 5 hours in regressing liver without significant fragmentation of DNA. Hepatology 18(5): 1238–1246, 1993

    Article  PubMed  CAS  Google Scholar 

  34. Goldsby RA, Kindt TJ, Osborne BA: Cells and organs of the immune system. In “Kuby Immunology Fourth Edition” 27–59, W.H. Freeman and Company, NY, 2000

  35. Usherwood EJ, Crowther G, Woodland DL: Apoptotic cells are generated at every division of in vitro cultured T cell lines. Cell Immunol 196(2): 131–137, 1999

    Article  PubMed  CAS  Google Scholar 

  36. Prasad A, Kaur S, Malla N, Gangluy NK, Mahajan RC: Ca++ signaling in the transformation of promastigotes to axenic amastigotes of Leishmania donovani. Mol Cell Biochem 224(1–2): 39–44, 2001

    Article  PubMed  CAS  Google Scholar 

  37. Voorheis HP, Martin BR: Characteristics of calcium mediated mechanism activating adenylate cyclase in Trypanosoma brucei. Eur J Biochem 116(3): 471–477, 1981

    Article  PubMed  CAS  Google Scholar 

  38. Samali A, Cotter TG: Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223(1): 163–170, 1996

    Article  PubMed  CAS  Google Scholar 

  39. Tibayrene M, Kjellberg F, Arnaud J, Oury B, Breniere SF Darde M, Ayala FJ: Are eukaryotic microorganisim clonal or sexual? A population genetics vantage. Proc Natl Acad Sci USA 88: 5129–5133, 1991

    Article  ADS  Google Scholar 

  40. Williams GT: Programmed cell death: a fundamental protective response to pathogens. Trends Microbiol 2(12): 463–464, 1994

    Article  PubMed  CAS  MATH  Google Scholar 

  41. Al-Olayan EM, Williams GT, Hurd H: Apoptosis in the malarial protozoan Plasmodium berghei: a possible mechanism for limiting infection in mosquito. Int J Parasitol 32(9): 1133–1143, 2002

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhbir Kaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raina, P., Kaur, S. Chronic heat-shock treatment driven differentiation induces apoptosis in Leishmania donovani . Mol Cell Biochem 289, 83–90 (2006). https://doi.org/10.1007/s11010-006-9151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9151-5

Keywords

Navigation