Skip to main content

Advertisement

Log in

Resistance to apoptosis in Leishmania infantum-infected human macrophages: a critical role for anti-apoptotic Bcl-2 protein and cellular IAP1/2

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Apoptosis is essential for maintaining tissue homoeostasis in multi-cellular organisms, also occurring as a defence mechanism against a number of infectious agents, such as parasites. Among intracellular protozoan parasites reported to interfere with the apoptotic machinery of the host cell, Leishmania (L.) sp. have been described, although the various species might activate different pathways in their host cells. Since until now it is not yet well clarified the signalling pathway involved in the apoptosis modulation by L. infantum, the aim of this work was to investigate the role of the anti-apoptotic protein, Bcl-2, and the inhibitors of apoptosis IAP1/2 (cIAP1/2) in cell death resistance showed in L. infantum-infected human macrophages. We observed that actinomycin D-induced apoptosis in U-937 cells, evaluated by Annexin V-CY3, DNA fragmentation and caspase-3, caspase-8, caspase-9 activation assays, was inhibited in the presence of L. infantum promastigotes and that, in these conditions, Bcl-2 protein expression resulted significantly upregulated. Interestingly, L. infantum infection in combination with the Bcl-2 inhibitor, ABT-737, significantly increased the apoptotic process in actinomycin D-treated cells, suggesting a role for Bcl-2 in the anti-apoptotic regulation of human macrophages induced by L. infantum infection. Moreover, Western blotting analysis demonstrated not only a significantly upregulation of cIAP1/2 in infected U-937 cells, but also that the inhibition of cIAPs, employing specific siRNAs, restored the apoptotic effect of actinomycin in infected macrophages. These results clearly support the hypothesis that Bcl-2 and cIAPs are strongly involved in the anti-apoptotic action played by L. infantum in human macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2:277–88.

    Article  CAS  PubMed  Google Scholar 

  3. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312–6.

    Article  CAS  PubMed  Google Scholar 

  4. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281:1322–6.

    Article  CAS  PubMed  Google Scholar 

  5. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13:1899–911.

    Article  CAS  PubMed  Google Scholar 

  6. Kelekar A, Thompson CB. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 1998;8:324–30.

    Article  CAS  PubMed  Google Scholar 

  7. Deveraux QL, Roy N, Stennicke HR, et al. IAPs block apoptotic events induced by Caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 1998;17:2215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004;5:897–907.

    Article  CAS  PubMed  Google Scholar 

  9. Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35:600–4.

    Article  CAS  PubMed  Google Scholar 

  10. Savill J, Gregory C, Haslett C. Cell biology. Eat me or die. Science. 2003;302:1516–7.

    Article  CAS  PubMed  Google Scholar 

  11. Heussler VT, Küenzi P, Rottenberg S. Inhibition of apoptosis by intracellular protozoan parasites. Int J Parasitol. 2001;31:1166–76.

    Article  CAS  PubMed  Google Scholar 

  12. Norbury CJ, Hickson ID. Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol. 2001;41:367–401.

    Article  CAS  PubMed  Google Scholar 

  13. Gupta P, Srivastav S, Saha S, Das PK, Ukil A. Leishmania donovani inhibits macrophage apoptosis and pro-inflammatory response through AKT-mediated regulation of β-catenin and FOXO-1. Cell Death Differ. 2016;23:1815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vázquez-López R, Argueta-Donohué J, Wilkins-Rodríguez A, Escalona-Montaño A, Aguirre-García M, Gutiérrez-Kobeh L. Leishmania mexicana amastigotes inhibit p38 and JNK and activate PI3K/AKT: role in the inhibition of apoptosis of dendritic cells. Parasite Immunol. 2015;37:579–89.

    Article  PubMed  Google Scholar 

  15. Lisi S, Sisto M, Acquafredda A, et al. Infection with Leishmania infantum Inhibits actinomycin D-induced apoptosis of human monocytic cell line U-937. J Eukaryot Microbiol. 2005;52:211–7.

    Article  CAS  PubMed  Google Scholar 

  16. Panaro MA, Acquafredda A, Lisi S, et al. Inducible nitric oxide synthase and nitric oxide production in Leishmania infantum-infected human macrophages stimulated with interferon-gamma and bacterial lipopolysaccharide. Int J Clin Lab Res. 1999;29:122–7.

    Article  CAS  PubMed  Google Scholar 

  17. Samali A, Cotter TG. Heat shock proteins increase resistance to apoptosis. Exp Cell Res. 1996;223:163–70.

    Article  CAS  PubMed  Google Scholar 

  18. Santos VC, Vale VF, Silva SM, et al. Host modulation by a parasite: how Leishmania infantum modifies the intestinal environment of Lutzomyia longipalpis to favor its development. PLoS ONE. 2014;9:e111241. https://doi.org/10.1371/journal.pone.0111241.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Millán J, Ferroglio E, Solano-Gallego L. Role of wildlife in the epidemiology of Leishmania infantum infection in Europe. Parasitol Res. 2014;113:2005–14.

    Article  PubMed  Google Scholar 

  20. Panaro MA, Spinelli R, Lisi S, et al. Reduced expression of the chemokine receptor CCR1 in human macrophages and U-937 cells in vitro infected with Leishmania infantum. Clin Exp Med. 2004;3:225–30.

    Article  CAS  PubMed  Google Scholar 

  21. Pandey RK, Mehrotra S, Sharma S, Gudde RS, Sundar S, Shaha C. Leishmania donovani-Induced Increase in macrophage Bcl-2 favors parasite survival. Front Immunol. 2016;7:456. https://doi.org/10.3389/fimmu.2016.00456.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Valdés-Reyes L, Argueta J, Morán J, et al. Leishmania mexicana: inhibition of camptothecin-induced apoptosis of monocyte-derived dendritic cells. Exp Parasitol. 2009;121:199–207.

    Article  PubMed  Google Scholar 

  23. Falcão Sde A, Jaramillo TM, Ferreira LG, Bernardes DM, Santana JM, Favali CB. Leishmania infantum and Leishmania braziliensis: differences and similarities to evade the innate immune system. Front Immunol. 2016;7:287. https://doi.org/10.3389/fimmu.2016.00287.

    PubMed  Google Scholar 

  24. DaMata JP, Mendes BP, Maciel-Lima K, et al. Distinct macrophage fates after in vitro infection with different species of Leishmania: induction of apoptosis by Leishmania (Leishmania) amazonensis, but not by Leishmania (Viannia) guyanensis. PLoS ONE. 2015;10:e0141196. https://doi.org/10.1371/journal.pone.0141196.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Becker I, Salaiza N, Aguirre M, et al. Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Mol Biochem Parasitol. 2003;130:65–74.

    Article  CAS  PubMed  Google Scholar 

  26. Shen Y, Kawamura I, Nomura T, et al. Toll-like receptor 2- and MyD88-dependent phosphatidylinositol 3-kinase and Rac1 activation facilitates the phagocytosis of Listeria monocytogenes by murine macrophages. Infect Immun. 2010;78:2857–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Richardson ET, Shukla S, Sweet DR, et al. Toll-like receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect Immun. 2015;83:2242–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trisciuoglio D, Iervolino A, Zupi G, Del BD. Involvement of PI3K and MAPK signaling in Bcl-2-induced vascular endothelial growth factor expression in melanoma cells. Mol Biol Cell. 2005;16:4153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruhland A, Kima PE. Activation of PI3K/Akt signaling has a dominant negative effect on IL-12 production by macrophages infected with L. amazonensis promastigotes. Exp Parasitol. 2009;122:28–36.

    Article  CAS  PubMed  Google Scholar 

  30. Ruhland A, Leal N, Kima PE. Leishmania promastigotes activate PI3K/Akt signalling to confer host cell resistance to apoptosis. Cell Microbiol. 2007;9:84–96.

    Article  CAS  PubMed  Google Scholar 

  31. Duckett CS, Nava VE, Gedrich RW, et al. A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J. 1996;15:2685–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tenev T, Zachariou A, Wilson R, Ditzel M, Meier P. IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Nat Cell Biol. 2005;7:70–7.

    Article  CAS  PubMed  Google Scholar 

  33. Huang HK, Joazeiro CA, Bonfoco E, Kamada S, Leverson JD, Hunter T. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem. 2000;275:26661–4.

    CAS  PubMed  Google Scholar 

  34. Choi YE, Butterworth M, Malladi S, Duckett CS, Cohen GM, Bratton SB. The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and -7 via unique mechanisms at distinct steps in their processing. J Biol Chem. 2009;284:12772–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by funds from the University of Bari (fondo di Ateneo 2014). Thanks are due to Ms. Mary V.C. Pragnell for linguistic text revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Cianciulli.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest related to the study.

Ethical approval

All authors have contributed to read and approved the final manuscript for submission.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cianciulli, A., Porro, C., Calvello, R. et al. Resistance to apoptosis in Leishmania infantum-infected human macrophages: a critical role for anti-apoptotic Bcl-2 protein and cellular IAP1/2. Clin Exp Med 18, 251–261 (2018). https://doi.org/10.1007/s10238-017-0482-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-017-0482-1

Keywords

Navigation