Skip to main content
Log in

Protection of cellular DNA from γ-radiation-induced damages and enhancement in DNA repair by troxerutin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The effect of troxerutin on γ-radiation-induced DNA strand breaks in different tissues of mice in vivo and formations of the micronuclei were studied in human peripheral blood lymphocytes ex vivo and mice blood reticulocytes in vivo. Treatments with 1 mM troxerutin significantly inhibited the micronuclei induction in the human lymphocytes. Troxerutin protected the human peripheral blood leucocytes from radiation-induced DNA strand breaks in a concentration dependent manner under ex vivo condition of irradiation (2 Gy). Intraperitoneal administration of troxerutin (175 mg/kg body weight) to mice before and after whole body radiation exposure inhibited micronuclei formation in blood reticulocytes significantly. The administration of different doses (75, 125 and 175 mg/kg body weight) of troxerutin 1 h prior to 4 Gy γ-radiation exposure showed dose-dependent decrease in the yield of DNA strand breaks in murine blood leucocytes and bone marrow cells. The dose-dependent protection was more pronounced in bone marrow cells than in blood leucocytes. Administration of 175 mg/kg body weight of the drug (i.p.) 1 h prior or immediately after whole body irradiation of mice showed that the decrease in strand breaks depended on the post-irradiation interval at which the analysis was done. The observed time-dependent decrease in the DNA strand breaks could be attributed to enhanced DNA repair in troxerutin administered animals. Thus in addition to anti-erythrocytic, anti-thrombic, fibrinolytic and oedema-protective rheological activity, troxerutin offers protection against γ-radiation-induced micronuclei formation and DNA strand breaks and enhances repair of radiation-induced DNA strand breaks. (Mol Cell Biochem xxx: 57–68, 2005)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arora R, Gupta D, Chawla R, Sagar R, Sharma A, Kumar R, Prasad J, Singh S, Samanta N, Sharma RK: Radioprotection by plant products; present status and future prospects. Phytother Res 19: 1–22, 2005

    Article  PubMed  CAS  Google Scholar 

  2. Nair CKK, Parida DK, Nomura T: Radioprotectors in radiotherapy. J Radiat Res (Tokyo) 42(1): 21–37, 2001

    CAS  Google Scholar 

  3. Weiss JF, Landauer MR: Protection against ionizing radiation by antioxidants nutrients and phytochemicals. Toxicology 189: 1–20, 2003

    Article  PubMed  CAS  Google Scholar 

  4. Maisim JR: Chemical radioprotection; past, present and future prospects. Int J Radiat Biol 73: 443–450, 1998

    Google Scholar 

  5. Shimoi K, Masuda S, Shen B, Furugori M, Kinae N: Radioprotective effects of antioxidative plant flavonoids in mice. Mutat Res 350(1): 153–161, 1996

    PubMed  CAS  Google Scholar 

  6. Rithidech KN, Tungjai M, Whorton EB: Protective effect of apigenin on radiation-induced chromosomal damage in human lymphocytes. Mutat Res (in press)

  7. Uma Devi P, Satyamitra M: Protection against prenatal irradiation-induced genomic instability and its consequences in adult mice by Ocimum flavonoids, orientin and vicenin. Int J Radiat Biol 80(9): 653–662, 2004

    PubMed  CAS  Google Scholar 

  8. Nayak V, Devi PU: Protection of mouse bone marrow against radiation-induced chromosome damage and stem cell death by the ocimum flavonoids orientin and vicenin. Radiat Res 163(2): 165–171, 2005

    PubMed  CAS  Google Scholar 

  9. Rehn D, Golden G, Nocker W, Diebschlag W, Lehmacher W: Comparision between the efficacy and tolerability of oxerutins and troxerutin in the treatment of patients with chronic venous insufficiency. Arzneimittelforschung 43(10): 1060–1063, 1993

    PubMed  CAS  Google Scholar 

  10. Boisseau MR, Taccoen A, Garreau C, Vergnes C, Roudaut MF, Garreau-Gomez B: Fibrinolysis and hemorheology in chronic venous insufficiency: a double blind study of troxerutin efficiency. J Cardiovasc Surg (Torino) 36(4): 369–374, 1995

    CAS  Google Scholar 

  11. Vin F, Chabanel A, Taccoen A, Ducros J, Gruffaz J, Hutinel B, Maillet P, Samama M: Action of the troxerutin on clinical parameters, plethysmographics and rheologics of venous insufficiency of the lower limbs: a placebo-controled trial. Arteres et Veines 11: 333–342, 1992

    Google Scholar 

  12. Vin F, Chabanel A, Taccoen A, Ducros J, Gruffaz J, Hutinel B, Maillet P, Samama M: Double blind trial of the efficacy of troxerutin in chronic venous insufficiency. Phlebology 9: 71–78, 1994

    Google Scholar 

  13. Incandela L, De Sanctis MT, Cesarone MR, Laurora G, Belcaro G, Taccoen A, Gerentes I: Efficacy of troxerutin in patients with chronic venous insufficiency: a double-blind, placebo-controlled study. Adv Ther 13(3): 161–166, 1996

    Google Scholar 

  14. Boisseau M, Freyburger G, Beylot C, Busquet M: Erythrocyte aggregation and parameters hemorheologic at the insufficiency venous influence of the troxerutin. Arteries et Veins 5(3): 231–234, 1986

    Google Scholar 

  15. Wadworth A, Faulds D: Hydroxyethylrutosides. A review of its pharmacology, and therapeutic efficacy in venous insufficiency and related disorders. Drugs 44(6): 1013–1032, 1992

    PubMed  CAS  Google Scholar 

  16. Auteri A, Blardi P, Frigerio C, de Lillo L, di Perri T: Pharmacodynamics of troxerutine in patients with chronic venous insufficiency: correlations with plasma drug levels. Int J Clin Pharmacol Res 10(4): 235–241, 1990

    PubMed  CAS  Google Scholar 

  17. Glacet-Bernard A, Coscas G, Chabanel A, Zourdani A, Lelong F, Samama MM: A randomized, double-masked study on the treatment of retinal vein occlusion with troxerutin. Am J Ophthalmol 118(4): 421–429, 1994

    PubMed  CAS  Google Scholar 

  18. Krupinski K, Giedrojc J, Bielawiec M: Effect of troxerutin on laser-induced thrombus formation in rat mesenteric vessels, coagulation parameter and platelet function. Pol J Pharmacol 48(3): 335–339, 1996

    PubMed  CAS  Google Scholar 

  19. Gueguen-Duchesne M, Durand F, Le Goff MC, Genetet B: Effects of troxerutin on the hemorheological parameters of patients with moderate arterial hypertension. Prog Clin Biol Res 280: 401–406, 1988

    PubMed  CAS  Google Scholar 

  20. Vanscheidt W, Rabe E, Naser-Hijazi B, Ramelet AA, Partsch H, Diehm C, Schultz-Ehrenburg U, Spengel F, Wirsching M, Gotz V, Schnitker J, Henneicke-von Zepelin HH: The efficacy and safety of a coumarin-/troxerutin-combination (SB-LOT) in patients with chronic venous insufficiency: a double blind placebo-controlled randomized study. Vasa 31(3): 185–190, 2002

    PubMed  CAS  Google Scholar 

  21. Marhic C: Clinical and rheological efficacy of troxerutin in obstetric gynecology. Rev Fr Gynecol Obstet 86(2 Pt 2): 209–212, 1991

    PubMed  CAS  Google Scholar 

  22. Wijayanegara H, Mose JC, Achmad L, Sobarna R, Permadi W: A clinical trial of hydroxyethylrutosides in treatment of hemorrhoids of pregnancy. J Int Med Res 20: 54–60, 1992

    PubMed  CAS  Google Scholar 

  23. Kessler M, Ubeaud G, Walter T, Sturm F, Jung L: Free radical scavenging and skin penetration of troxerutin and vitamin derivatives. J Dermatol Treat 13(3): 133–141, 2002

    Article  CAS  Google Scholar 

  24. Blasig IE, Loewe H, Elbert B: Radical trapping and lipid peroxidation during myocardial reperfusion injury – radical scavenging by troxerutin in comprision to mannitol. Biomed Biochim Acta 47(8–9): S539–S544, 1987

    Google Scholar 

  25. Blasig IE, Loewe H, Elbert B: Effect of troxerutin and methionine on spin trapping of free oxy-radicals. Biomed Biochim Acta 47(10–11): S252–S255, 1988

    PubMed  CAS  Google Scholar 

  26. Wenisch C, Biffignandi PM: Effect of bioflavonoids (trihydroxyethylrutin and disodium flavodate) in vitro on neutrophil reactive oxygen production and phagocytotic ability to assess by flow cytometry. Curr Med Res Opin 17(2): 123–127, 2001

    Article  PubMed  CAS  Google Scholar 

  27. Grotz KA, Henneicke-von Zepelin HH, Khnen R, al-Nawas B, Bockisch A, Kutzner J, Wustenberg P, Naser-Hijazi B, Belz GG, Wagner W: Prospective double-blind study of prophylaxis of radioxerostomia with coumarin/troxerutine in patients with head and neck cancer. Strahlenther Onkol 175(8): 397–403, 1999

    PubMed  CAS  Google Scholar 

  28. Maurya DK, Salvi VP, Nair CKK: Radioprotection of normal tissues in tumour-bearing mice by Troxerutin. J Radiat Res 45(2): 221–228, 2004

    PubMed  CAS  Google Scholar 

  29. Sreedevi B, Rao BS: Assay of micronuclei in peripheral blood lymphocytes as a biological indicator of radiation dose. Radiat Prot Dosim 50(1): 41–45, 1994

    Google Scholar 

  30. Hayashi M, Morita T, Kodama Y, Sofuni T, Ishidate M, Jr: The micronucleus assay with mouse peripheral blood reticulocytes using acridine orange-coated slides. Mutat Res 245(4): 245–249, 1990

    Article  PubMed  CAS  Google Scholar 

  31. Singh NP: Microgels for estimation of DNA strand breaks DNA protein crosslinks and apoptosis. Mutat Res 455(1–2): 111–127, 2000

    PubMed  CAS  Google Scholar 

  32. Gandhi NM, Maurya DK, Salvi V, Kapoor S, Mukherjee T, Nair CKK: Radioprotection of DNA by Glycyrrhizic acid through scavenging free radicals. J Radiat Res 45: 461–468, 2004

    PubMed  CAS  Google Scholar 

  33. Konca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Gozdz S, Koza Z, Wojcik A: A cross platform public domain PC image analysis program for the comet assay. Mutat Res 534(1–2): 15–20, 2003

    PubMed  CAS  Google Scholar 

  34. Mendiola-Cruz MT, Morales-Ramirez P: Repair kinetics of gamma-ray induced DNA damage determined by single cell gel electrophoresis. Mutat Res 433: 45–52, 1999

    PubMed  CAS  Google Scholar 

  35. Belli M, Sapora O, Tobocchini MA: Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. J Radiat Res (Tokyo) 43: S13–S19, 2002

    Article  CAS  Google Scholar 

  36. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF: Single cell gel/comet assay: guidelines for the in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3), 206–221, 2000

  37. Nair CKK, Salvi V, Kagiya TV, Rajagopalan R: Relevance of radioprotectors in radiotherapy: studies with Tocopherol Monoglucoside. J Environ Pathol Toxicol Oncol 23(2): 153–160, 2004

    PubMed  CAS  Google Scholar 

  38. Olive PL: DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int J Radiat Biol 75(4): 395–405, 1999

    Article  PubMed  CAS  Google Scholar 

  39. Kassie F, Parzefall W, Knassmuller S: Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res 463: 13–31, 2000

    PubMed  CAS  Google Scholar 

  40. Hook GJ, Zhang P, Lagroye I, Li L, Higashikubo R, Moros EG, Strube WL, Pickard WF, Baty JD, Roti JR: Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation. Radiat Res 161(2): 193–200, 2004

    PubMed  CAS  Google Scholar 

  41. Cordelli E, Fresegna AM, Leter G, Eleuteri P, Spano M, Villani P: Evaluation of DNA damage in different stages of mouse spermatogenesis after testicular X irradiation. Radiat Res 160: 443–451, 2003

    PubMed  CAS  Google Scholar 

  42. Singh RK, Verma NC, Kagiya VT: Effect of a water soluble derivative of alpha-tocopherol on radiation response of Saccharomyces cerivisiae. Indian J Biochem Biophys 38: 399–405, 2001

    PubMed  CAS  Google Scholar 

  43. Marzin D, Phi H, Olivier P, Sauzieres J: Study of the mutagenic activity of troxerutin, a flavonoid derivatives. Toxicol Lett 35(2–3): 297–305, 1987

    PubMed  CAS  Google Scholar 

  44. Patwardhan A, Carlsson K, Poullain JC, Taccoen A, Gerentes I: The affinity of troxerutin for the venous wall measured by laser scanning microscopy. J Cardiovasc Surg (Torino) 36(4): 381–385, 1995

    CAS  Google Scholar 

  45. Carlson K, Patwardhan A, Poullain JC, Gerentes I: Transport et fixation de la troxerutine dans la paroi veineuse. J Mal Vasc 21(Suppl C): 270–274, 1996

    Google Scholar 

  46. Basile M, Gidaro S, Pacella M, Biffignandi PM, Gidaro GS: Parental troxerutin and carbazochrome combination in the treatment of post-hemorrhoidectomy status: a randomized, double blind, placebo-controlled, phase IV study. Curr Med Res Opin 17(4): 256–261, 2001

    Article  PubMed  CAS  Google Scholar 

  47. Berrington de Gonzalez A, Darby S: Risk of cancer from diagnostic X-rays: estimates for UK and 14 other countries. Lancet 363: 345–351, 2004

    PubMed  Google Scholar 

  48. Tannehill SP, Mehta MP: Amifostine and radiation therapy: past, present and future. Semin Oncol 23(4 Suppl 8): 69–77, 1996

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherupally Krishnan Krishnan Nair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurya, D.K., Balakrishnan, S., Salvi, V.P. et al. Protection of cellular DNA from γ-radiation-induced damages and enhancement in DNA repair by troxerutin. Mol Cell Biochem 280, 57–68 (2005). https://doi.org/10.1007/s11010-005-8052-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-8052-3

Keyword

Navigation