Skip to main content
Log in

Evaluating Nearly Singular Multinormal Expectations with Application to Wave Distributions

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

The numerical computation of expectations for (nearly) singular multivariate normal distribution is a difficult problem, which frequently occurs in widely varying statistical contexts. In this article we discuss several strategies to improve the algorithm proposed by Genz and Kwong (2000) when either a moderate accuracy is requested, the correlation structure is strong, and, most importantly, the dimension of the integral is large. Test results for typical problems show an average speedup of 10 using the modified algorithm, but even more is gained as the dimension of the problem increases. We apply the modified algorithm to compute long-run distributions of Gaussian wave characteristics, a difficult problem where previous algorithms fail to compute accurate values in reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Ambartzumian, A. Der Kiureghian, V. Ohanian, and H. Sukiasian, “Multinormal probability by sequential conditioned importance sampling: theory and application,” Probalistic Engineering Mechanics vol. 13(4) pp. 299–308, 1998.

    Article  Google Scholar 

  • A. Baxevani, K. PodgĂłrski, and I. Rychlik, “Velocities for moving random surfaces,” Probalistic Engineering Mechanics vol. 18(3) pp. 251–271, 2003.

    Article  Google Scholar 

  • M. Beckers and A. Haegemans, “A comparision of numerical integration techniques for multivariate normal integrals.” Technical Report preprint, Comp. Sci. Dept., Cath. Univ. Leuven, Belgium, 1992.

  • J. Berntsen, T. Espelid, and A. Genz, “Algortihm 698: DCUHRE—an adaptive multidimensional integration routine for vector of integrals,” ACM Transactions on Mathematical Software vol. 17 pp. 452–456, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Brodtkorb, “Evaluating multinormal probabilities with product correlation structure.” Technical Report No. 28, ISSN 1403 9338, Math. Stat., Center for Math. Sci., Lund Univ., Sweden, 2004.

  • P. Brodtkorb, P. Johannesson, G. Lindgren, I. Rychlik, J. RydĂ©n, and E. Sjö, “WAFO—a Matlab toolbox for the analysis of random waves and loads.” In: Proc. 10'th Int. Offshore and Polar Eng. Conf., ISOPE, Seattle, USA, vol. 3. pp. 343–350, 2000.

  • T. C. Chan and H. A. van der Vorst, “Approximate and incomplete factorizations.” Technical Report 871, Dept. of Math., Univ. of Utrecht, The Netherlands, http://www.citeseer.ist.psu.edu/chan94approximate.html, 1994.

  • W. J. Cody, “Rational Chebyshev approximations for the error function,” Mathematics Competitions pp. 631–638, 1969.

  • R. Cranley and T. Patterson, “Randomization of number theoretic methods for multiple integration,” SIAM Journal on Numerical Analysis vol. 13 pp. 904–914, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  • P. I. Davies and N. J. Higham, “Numerically stable generation of correlation matrices and their factors.” Technical Report 354, Manchester Centre for Comp. Math., Manchester, England, 1999.

  • P. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, pp. 482–483, 1984.

  • I. Deák, “Three digit accurate multiple normal probabilities,” Numerical Mathematics vol. 35 pp. 369–380, 1980.

    Article  MATH  Google Scholar 

  • I. Deák, “Computing probabilities of rectangles in case of multinormal distribution.” Journal of Statistical Computation and Simulation vol. 26, pp. 101–114, 1986.

    MATH  MathSciNet  Google Scholar 

  • I. Deák, Random Number Generation and Simulation, AkadĂ©miai KiadĂł: Budapest, Chapter 7, 1990.

    Google Scholar 

  • I. Deák, “Probabilities of simple n-dimensional sets for the normal distribution,” IIE Transactions vol. 35 pp. 285–293, 2003.

    Article  Google Scholar 

  • O. Ditlevsen, R. Melchers, and H. Gluver, “General multi-dimensional probability integration by directional simulation,” Computers and Structures vol. 36(2) pp. 355–368, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  • C. W. Dunnett, “Multivariate normal probability integrals with product correlation structure,” Applied Statistics vol. 38(3) pp. 564–571, 1989.

    MATH  Google Scholar 

  • H. Gassmann, “Multivariate normal probabilities: implementing an old idea of Plackett's,” Journal of Computational and Graphical Statistics vol. 12(3) pp. 731–752, 2003.

    Article  MathSciNet  Google Scholar 

  • H. Gassmann, I. Deák, and T. Szantai, “Computing multivariate normal probabilities: a new look,” Journal of Computational and Graphical Statistics vol. 11(4) pp. 920–949, 2002.

    Article  MathSciNet  Google Scholar 

  • A. Genz, “Numerical computation of multivariate normal probabilities,” Journal of Computational and Graphical Statistics vol. 1 pp. 141–149, 1992.

    Google Scholar 

  • A. Genz, “Comparison of methods for the computation of multivariate normal probabilities,” Computing Science and Statistics vol. 25 pp. 400–405, 1993.

    Google Scholar 

  • A. Genz, “Numerical computation of rectangular bivariate and trivariate normal and t-probabilities,” Statistics and Computing vol. 14 pp. 151–160, 2004.

    Article  MathSciNet  Google Scholar 

  • A. Genz and K.-S. Kwong, “Numerical evaluation of singular multivariate normal distributions,” Journal of Statistical Computation and Simulation vol. 68 pp. 1–21, 2000.

    MathSciNet  MATH  Google Scholar 

  • A. Genz and F. Bretz, “Methods for the computation of multivariate t-probabilities,” Journal of Computational and Graphical Statistics vol. 11 pp. 950–971, 2002.

    Article  MathSciNet  Google Scholar 

  • G. Gibson, C. A. Glasbey, and D. Elston, “Monte-Carlo evaluation of multivariate normal integrals.” Technical Report preprint, Scottish Agricultural Stat. Service, 1992.

  • G. Golub and C. Van Loan, Matrix Computations (2nd edn.), Johns Hopkins University Press, 1989.

  • K. Hasselmann, T. Barnett, E. Buows, H. Carlson, D. Carthwright, K. Enke, J. Ewing, H. Gienapp, D. Hasselmann, P. Kruseman, A. Meerburg, A. MĂĽller, D. Olbers, K. Richter, W. Sell, and H. Walden, “Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project,” Deutschen Hydrografischen Zeitschrift vol. 12 pp. 9–95, 1973.

    Google Scholar 

  • M. Healy, “Algorithm AS 6: triangular decomposition of a symmetric matrix,” Applied Statistics vol. 17 pp. 195–196, 1968.

    MathSciNet  Google Scholar 

  • N. J. Higham, “Analysis of the Cholesky decomposition of a semi-definite matrix.” In M. Cox and S. Hammarling (eds.), Reliable Numerical Computation, Oxford Universtiy Press, pp. 161–185, 1990.

  • M. Hohenbichler and R. Rackwitz, “First-order concepts in system reliability,” Structural Safety vol. 1(3) pp. 177–188, 1983.

    Article  Google Scholar 

  • H. Hong and F. Hickernell, “Implementing scrambled digital sequences,” ACM Transactions on Mathematical Software vol. 29 pp. 95–109, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Keast, “Optimal parameters for multidimensional integration,” SIAM Journal on Numerical Analysis vol. 10 pp. 831–838, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  • G. Lepage, “A new algorithm for adaptive multidimensional integration,” Journal of Computational Physics vol. 27 pp. 192–203, 1978.

    Article  MATH  Google Scholar 

  • G. Lindgren and I. Rychlik, “How reliable are contour curves? Confidence sets for level countours,” Bernoulli vol. 1 pp. 301–319, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Monahan and A. Genz, “Spherical-radial integration rules for Bayesian computation,” Journal of the American Statistical Association vol. 92 pp. 664–674, 1997.

    MATH  Google Scholar 

  • M. Ochi and K. Ahn, “Non-Gaussian probability distribution of coastal waves.” In: Proc. 24'th Int. Conf. on Coastal Eng., ICCE, Kobe, Japan, vol. 1. pp. 482–496, 1994.

  • K. PodgĂłrski, I. Rychlik, and U. Machado, “Exact distributions for apparent waves in irregular seas,” Ocean Engineering vol. 27(1) pp. 979–1016, 2000a.

    Article  Google Scholar 

  • K. PodgĂłrski, I. Rychlik, J. RydĂ©n, and E. Sjö, “How big are the big waves?” International Journal of Offshore and Polar Engineering vol. 10 pp. 161–169, 2000b.

    Google Scholar 

  • K. PodgĂłrski, I. Rychlik, and E. Sjö, “Statistics for velocities of Gaussian waves,” International Journal of Offshore and Polar Engineering vol. 10(2) pp. 91–98, 2000c.

    Google Scholar 

  • M. Rosenblatt, “Remarks on a multivariate transformation,” Annals of Mathematical Statistics vol. 23 pp. 470–472, 1952.

    MATH  MathSciNet  Google Scholar 

  • I. Rychlik, “A note on Durbin's formula for the first-passage density,” Statistics and Probability Letters vol. 5 pp. 425–428, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  • I. Rychlik, “Confidence bands for linear regressions,” Communications in Statistics-Simulation and Computation vol. 21(2) pp. 333–352, 1992.

    MATH  MathSciNet  Google Scholar 

  • I. Rychlik, P. Johannesson, and M. R. Leadbetter, “Modelling and statistical analysis of ocean-wave data using transformed Gaussian process,” Marine Structures, Design, Construction and Safety vol. 10 pp. 13–47, 1997.

    Google Scholar 

  • J. RydĂ©n, S. van Iseghem, M. Olagnon, and I. Rychlik, “Evaluating height-length joint distributions for the crests of ocean waves,” Applied Ocean Research vol. 24(2) pp. 189–201, 2002.

    Article  Google Scholar 

  • M. Schervish, “Multivariate normal probabilities with error bound,” Applied Statistics vol. 33 pp. 81–87, 1984.

    MATH  Google Scholar 

  • W. Schroeder, K. Martin, and B. Lorensen, “The visualization toolkit.” An Object-Orientated Approach to 3D Graphics., ISBN 0-13-954694-4. Prentice-Hall.http://public.kitware.com/VTK/, 1998.

  • W. Schroeder, L. Avila, K. Martin, W. Hoffman, and C. Law, The visualization toolkit user's guide, ISBN 1-930934-05-X. Kitware, inc.http://public.kitware.com/VTK/, 2001.

  • E. Sjö, “Simultaneous distributions of space-time wave characteristics in a Gaussian sea,” Extremes vol. 3 pp. 263–288, 2001.

    Article  MATH  Google Scholar 

  • P. Somerville, “Numerical computation of multivariate normal and multivariate-t probabilities over Convex regions,” Journal of Computational and Graphical Statistics vol. 7(4) pp. 529–544, 1998.

    MathSciNet  Google Scholar 

  • G. Stewart, “The efficient generation of random orthogonal matrices with an application to condition estimators,” SIAM Journal on Numerical Analysis vol. 17 pp. 403–409, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  • Y. Tong, The Multivariate Normal Distribution, Springer-Verlag, 1990.

  • S. Winterstein, “Nonlinear vibration models for extremes and fatigue,” Journal of Engineering Mechanics, ASCE vol. 114(10) pp. 1772–1790, 1988.

    Article  Google Scholar 

  • P. Wynn, “On a device for computing the \(e_{m}(S_{n})\) transformation,” Mathematical Tables and other Aids to Computation vol. 10 pp. 91–96, 1956.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per A. Brodtkorb.

Additional information

AMS 2000 Subject Classification

65C60, 65D15, 68W25

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodtkorb, P.A. Evaluating Nearly Singular Multinormal Expectations with Application to Wave Distributions. Methodol Comput Appl Probab 8, 65–91 (2006). https://doi.org/10.1007/s11009-006-7289-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-006-7289-y

Keywords

Navigation