Skip to main content
Log in

Estimating Stochastic Dynamical Systems Driven by a Continuous-Time Jump Markov Process

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

We discuss the use of a continuous-time jump Markov process as the driving process in stochastic differential systems. Results are given on the estimation of the infinitesimal generator of the jump Markov process, when considering sample paths on random time intervals. These results are then applied within the framework of stochastic dynamical systems modeling and estimation. Numerical examples are given to illustrate both consistency and asymptotic normality of the estimator of the infinitesimal generator of the driving process. We apply these results to fatigue crack growth modeling as an example of a complex dynamical system, with applications to reliability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Albert, “Estimating the infinitesimal generator of a continuous time, finite state Markov process,” Annals of Mathematical Statistics vol. 38 pp. 727–753, 1962.

    MathSciNet  Google Scholar 

  • P. Billingsley, Statistical Inference for Markov Processes, University of Chicago Press: Chicago, 1961.

    MATH  Google Scholar 

  • J. Chiquet, N. Limnios, and M. Eid, “Modeling and estimating the reliability of stochastic dynamical systems with markovian switching.” In ESREL 2006 - Safety and Reliability for managing Risks, 2006.

  • R. Dautray (ed.), Méthodes probabilistes pour les équations de la physique, Synthèse. Eyrolles: Paris, France, 1989.

    Google Scholar 

  • M. H. A. Davis, Markov Models and Optimization, Monographs On statistics and Applied Probability 49, Chapman & Hall, UK, 1993.

    Google Scholar 

  • S. Goldstein, “On diffusion by discontinuous movements, and on the telegraph equation,” Quarterly Journal of Mechanics and Applied Mathematics vol. 4 pp. 129–156, 1951.

    MathSciNet  MATH  Google Scholar 

  • W. Härdle, Applied Nonparametric Regression, Econometric Society Monographs, Cambridge University Press, Cambridge, UK, 1990.

    Google Scholar 

  • A. Jankunas and R. Z. Khasminskii, “Estimation of parameters of linear homogeneous stochastic differential equation,” Stochastic Processes and their Applications vol. 72 pp. 205–219, 1997.

    Article  MathSciNet  Google Scholar 

  • V. S. Korolyuk and N. Limnios, Stochastic Systems in Merging Phase Space, World Scientific: Singapore, 2005.

    Google Scholar 

  • Y. A. Kutoyants, Statistical Inference for Ergodic Diffusion Processes, Springer: Berlin Heidelberg New York, 2004.

    MATH  Google Scholar 

  • B. Lapeyre and E. Pardoux, Méthodes de Monte-Carlo pour les équations de transport et de diffusion, Springer: Berlin Heidelberg New York, 1998.

    MATH  Google Scholar 

  • Y. K. Lin and J. N. Yang, “A stochastic theory of fatigue crack propagation,” AIAA Journal vol. 23 pp. 117–124, 1985.

    MATH  Google Scholar 

  • B. Øksendal, Stochastic Differential Equations, 6th edn., Springer: Berlin Heidelberg New York, 2003.

    MATH  Google Scholar 

  • A. Sadek and N. Limnios, “Nonparametric estimation of reliability and survival function for continuous time finite Markov process,” Journal of Statistical Planning and Inference vol. 133 pp. 1–21, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  • K. Sobczyk, Stochastic Differential Equations with Applications to Physics and Engineering, Kluwer: Dordrecht, The Netherlands, 1991.

    MATH  Google Scholar 

  • K. Sobczyk (ed.), Stochastic Approach to Fatigue, Springer: Berlin Heidelberg New York, 1993.

    MATH  Google Scholar 

  • B. F. Spencer, J. Tang, and M. E. Artley, “A stochastic approach to modeling fatigue crack growth,” AIAA Journal vol. 114 pp. 1628–1635, 1989.

    Article  Google Scholar 

  • H. Tanaka, “Importance sampling simulation for a stochastic fatigue crack growth model,” In R. E. Melchers and M. G. Stewart (eds.), Proceeding of ICASP8 vol. 2, pp. 907–914, 1999.

  • A. Tsurui and H. Ishikawa, “Application of the Fokker-Plank equation to a stochastic fatigue crack growth model,” Structural Safety vol. 4 pp. 15–29, 1986.

    Article  Google Scholar 

  • D. A. Virkler, B. M. Hillberry, and P. K. Goel, “The statistical nature of fatigue crack propagation,” Journal of Engineering Material Technology ASME vol. 101 pp. 148–153, 1979.

    Article  Google Scholar 

  • J. N. Yang and S. D. Manning, “A simple second order approximation for stochastic crack growth analysis,” Engineering Fracture Mechanics vol. 53 pp. 677–686, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Chiquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiquet, J., Limnios, N. Estimating Stochastic Dynamical Systems Driven by a Continuous-Time Jump Markov Process. Methodol Comput Appl Probab 8, 431–447 (2006). https://doi.org/10.1007/s11009-006-0423-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-006-0423-z

Keywords

AMS 2000 Subject Classification

Navigation