Skip to main content
Log in

GTPases of the Translation Apparatus

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Protein biosynthesis is a complex biochemical process involving a number of stages at which different translation factors specifically interact with ribosome. Some of these factors belong to GTP-binding proteins, or G-proteins. Due to their functioning, GTP is hydrolyzed to yield GDP and the inorganic phosphate ion Pi. Interaction with ribosome enhances GTPase activity of translation factors; i.e., ribosome plays a role of GTPase-activating protein (GAP). GTPases involved in translation interact with ribosome at every stage of protein biosynthesis. Initiation factor 2 (IF2) catalyzes initiator tRNA binding to the ribosome P site and subsequent binding of the 50S subunit to the initiation complex of the 30S subunit. Elongation factor Tu (EF-Tu) controls aminoacyl-tRNA delivery to the ribosome A site, while elongation factor G (EF-G) catalyzes translocation of the mRNA-tRNA complex by one codon on the ribosome. Release factor 3 (RF3) catalyzes the release of termination factors 1 or 2 (RF1 or RF2) from the ribosomal complex after completion of protein synthesis and peptidyl-tRNA hydrolysis. The functional properties of translational GTPases as related to other G-proteins, the putative mechanism of GTP hydrolysis, structural features, and the functional cycles of translational GTPases are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bourne H.R., Sanders D.A., McCormick F. 1990. The GTPase superfamily: A conserved switch for diverse cell functions. Nature. 348, 125–132.

    PubMed  CAS  Google Scholar 

  2. Sprang S.R. 1997. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639–678.

    Article  PubMed  CAS  Google Scholar 

  3. Gudkov A.T. 2001. Structure and functions of prokaryotic elongation factor G. Mol. Biol. 35, 647–654.

    Article  CAS  Google Scholar 

  4. Andersen G.R., Nissen P., Nyborg J. 2003. Elongation factors in protein biosynthesis. Trends. Biochem. Sci. 28, 434–441.

    Article  PubMed  CAS  Google Scholar 

  5. Bourne H.R., Sanders D.A., McCormick F. 1991. The GTPase superfamily: Conserved structure and molecular mechanism. Nature. 349, 117–127.

    Article  PubMed  CAS  Google Scholar 

  6. Vetter I.R., Wittinghofer A. 2001. The guanine nucleotide-binding switch in three dimensions. Science. 294, 1299–1304.

    Article  PubMed  CAS  Google Scholar 

  7. Berman D.M., Kozasa T., Gilman A.G. 1996. The GTPase-activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. J. Biol. Chem. 271, 27209–27212.

    Article  PubMed  CAS  Google Scholar 

  8. Seewald M.J., Korner C., Wittinghofer A., Vetter I.R. 2002. RanGAP mediates GTP hydrolysis without an arginine finger. Nature. 415, 662–666.

    Article  PubMed  CAS  Google Scholar 

  9. Pai E.F., Krengel U., Petsko G.A., Goody R.S., Kabsch W., Wittinghofer A. 1990. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351–2359.

    PubMed  CAS  Google Scholar 

  10. Tong L.A., de Vos A.M., Milburn M.V., Kim S.H. 1991. Crystal structures at 2.2 Å resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J. Mol. Biol. 217, 503–516.

    Article  PubMed  CAS  Google Scholar 

  11. Milburn M.V., Tong L., de Vos A.M., Brunger A., Yamaizumi Z., Nishimura S., Kim S.H. 1990. Molecular switch for signal transduction: Structural differences between active and inactive forms of protooncogenic ras proteins. Science. 247, 939–945.

    PubMed  CAS  Google Scholar 

  12. Kraulis P.J., Domaille P.J., Campbell-Burk S.L., van Aken T., Laue E.D. 1994. Solution structure and dynamics of ras p21.GDP determined by heteronuclear three-and four-dimensional NMR spectroscopy. Biochemistry. 33, 3515–3531.

    Article  PubMed  CAS  Google Scholar 

  13. Prive G.G., Milburn M.V., Tong L., de Vos A.M., Yamaizumi Z., Nishimura S., Kim S.H. 1992. X-ray crystal structures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis. Proc. Natl. Acad. Sci. USA. 89, 3649–3653.

    PubMed  CAS  Google Scholar 

  14. Langen R., Schweins T., Warshel A. 1992. On the mechanism of guanosine triphosphate hydrolysis in ras p21 proteins. Biochemistry. 31, 8691–8696.

    Article  PubMed  CAS  Google Scholar 

  15. Schweins T., Langen R., Warshel A. 1994. Why have mutagenesis studies not located the general base in ras p21. Nature Struct. Biol. 1, 476–484.

    Article  PubMed  CAS  Google Scholar 

  16. Schweins T., Geyer M., Kalbitzer H.R., Wittinghofer A., Warshel A. 1996. Linear free energy relationships in the intrinsic and GTPase activating protein-stimulated guanosine 5′-triphosphate hydrolysis of p21ras. Biochemistry. 35, 14225–14231.

    PubMed  CAS  Google Scholar 

  17. Coleman D.E., Berghuis A.M., Lee E., Linder M.E., Gilman A.G., Sprang S.R. 1994. Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science. 265, 1405–1412.

    PubMed  CAS  Google Scholar 

  18. Sondek J., Lambright D.G., Noel J.P., Hamm H.E., Sigler P.B. 1994. GTPase mechanism of G proteins from the 1.7-Å crystal structure of transducin alpha-GDP-AIF 4 . Nature. 372, 276–279.

    Article  PubMed  CAS  Google Scholar 

  19. Rittinger K., Walker P.A., Eccleston J.F., Smerdon S.J., Gamblin S.J. 1997. Structure at 1.65 Å of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature. 389, 758–762.

    PubMed  CAS  Google Scholar 

  20. Scheffzek K., Ahmadian M.R., Kabsch W., Wiesmuller L., Lautwein A., Schmitz F., Wittinghofer A. 1997. The Ras-RasGAP complex: Structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science. 277, 333–338.

    Article  PubMed  CAS  Google Scholar 

  21. Tesmer J.J., Berman D.M., Gilman A.G., Sprang S.R. 1997. Structure of RGS4 bound to AlF 4 -activated Gi alpha1: Stabilization of the transition state for GTP hydrolysis. Cell. 89, 251–261.

    Article  PubMed  CAS  Google Scholar 

  22. Maegley K.A., Admiraal S.J., Herschlag D. 1996. Rascatalyzed hydrolysis of GTP: A new perspective from model studies. Proc. Natl. Acad. Sci. USA. 93, 8160–8166.

    Article  PubMed  CAS  Google Scholar 

  23. Scheidig A.J., Burmester C., Goody R.S. 1999. The prehydrolysis state of p21(ras) in complex with GTP: New insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins. Structure Fold. Des. 7, 1311–1324.

    PubMed  CAS  Google Scholar 

  24. Gilman A.G. 1987. G proteins: Transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649.

    Article  PubMed  CAS  Google Scholar 

  25. Zeidler W., Schirmer N.K., Egle C., Ribeiro S., Kreutzer R., Sprinzl M. 1996. Limited proteolysis and amino acid replacements in the effector region of Thermus thermophilus elongation factor Tu. Eur. J. Biochem. 239, 265–271.

    Article  PubMed  CAS  Google Scholar 

  26. Kjeldgaard M., Nyborg J. 1992. Refined structure of elongation factor EF-Tu from Escherichia coli. J. Mol. Biol. 223, 721–742.

    Article  PubMed  CAS  Google Scholar 

  27. Abel K., Yoder M.D., Hilgenfeld R., Jurnak F. 1996. An alpha to beta conformational switch in EF-Tu. Structure. 4, 1153–1159.

    PubMed  CAS  Google Scholar 

  28. Polekhina G., Thirup S., Kjeldgaard M., Nissen P., Lippmann C., Nyborg J. 1996. Helix unwinding in the effector region of elongation factor EF-Tu-GDP. Structure. 4, 1141–1151.

    Article  PubMed  CAS  Google Scholar 

  29. Berchtold H., Reshetnikova L., Reiser C.O., Schirmer N.K., Sprinzl M., Hilgenfeld R. 1993. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature. 365, 126–132.

    Article  PubMed  CAS  Google Scholar 

  30. Kjeldgaard M., Nissen P., Thirup S., Nyborg J. 1993. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure. 1, 35–50.

    Article  PubMed  CAS  Google Scholar 

  31. Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B.F., Nyborg J. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 270, 1464–1472.

    PubMed  CAS  Google Scholar 

  32. Nissen P., Thirup S., Kjeldgaard M., Nyborg J. 1999. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure Fold. Des. 7, 143–156.

    PubMed  CAS  Google Scholar 

  33. Aevarsson A., Brazhnikov E., Garber M., Zheltonosova J., Chirgadze Y., al-Karadaghi S., Svensson L.A., Liljas A. 1994. Three-dimensional structure of the ribosomal translocase: Elongation factor G from Thermus thermophilus. EMBO J. 13, 3669–3677.

    PubMed  CAS  Google Scholar 

  34. Czworkowski J., Wang J., Steitz T.A., Moore P.B. 1994. The crystal structure of elongation factor G complexed with GDP, at 2.7 Å resolution. EMBO J. 13, 3661–3668.

    PubMed  CAS  Google Scholar 

  35. al-Karadaghi S., Aevarsson A., Garber M., Zheltonosova J., Liljas A. 1996. The structure of elongation factor G in complex with GDP: Conformational flexibility and nucleotide exchange. Structure. 4, 555–565.

    PubMed  CAS  Google Scholar 

  36. Roll-Mecak A., Cao C., Dever T.E., Burley S.K. 2000. X-Ray structures of the universal translation initiation factor IF2/eIF5B: Conformational changes on GDP and GTP binding. Cell. 103, 781–792.

    PubMed  CAS  Google Scholar 

  37. Klaholz B.P., Myasnikov A.G., van Heel M. 2004. Visualization of release factor 3 on the ribosome during termination of protein synthesis. Nature. 427, 862–865.

    Article  PubMed  CAS  Google Scholar 

  38. Spurio R., Brandi L., Caserta E., Pon C.L., Gualerzi C.O., Misselwitz R., Krafft C., Welfle K., Welfle H. 2000. The C-terminal subdomain (IF2 C-2) contains the entire fMet-tRNA binding site of initiation factor IF2. J. Biol. Chem. 275, 2447–2454.

    Article  PubMed  CAS  Google Scholar 

  39. Meunier S., Spurio R., Czisch M., Wechselberger R., Guenneugues M., Gualerzi C.O., Boelens R. 2000. Structure of the fMet-tRNA(fMet)-binding domain of B. stearothermophilus initiation factor IF2. EMBO J. 19, 1918–1926.

    Article  PubMed  CAS  Google Scholar 

  40. Moore P.B. 1995. Molecular mimicry in protein synthesis? Science. 270, 1453–1454.

    PubMed  CAS  Google Scholar 

  41. Liljas A. 1996. Imprinting through molecular mimicry. Protein synthesis. Curr. Biol. 6, 247–249.

    Article  PubMed  CAS  Google Scholar 

  42. Nyborg J., Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Clark B.F., Reshetnikova L. 1997. Macromolecular mimicry in protein biosynthesis. Fold. Des. 2, S7–S11.

    Article  PubMed  CAS  Google Scholar 

  43. Ito K., Ebihara K., Uno M., Nakamura Y. 1996. Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proc. Natl. Acad. Sci. USA. 93, 5443–5448.

    PubMed  CAS  Google Scholar 

  44. Nakamura Y., Ito K., Isaksson L.A. 1996. Emerging understanding of translation termination. Cell. 87, 147–150.

    Article  PubMed  CAS  Google Scholar 

  45. Hilgenfeld R. 1995. How do the GTPases really work? Nature Struct. Biol. 2, 3–6.

    Article  PubMed  CAS  Google Scholar 

  46. Kaziro Y. 1978. The role of guanosine 5′-triphosphate in polypeptide chain elongation. Biochim. Biophys. Acta. 505, 95–127.

    PubMed  CAS  Google Scholar 

  47. Rodnina M.V., Stark H., Savelsbergh A., Wieden H.J., Mohr D., Matassova N.B., Peske F., Daviter T., Gualerzi C.O., Wintermeyer W. 2000. GTPases mechanisms and functions of translation factors on the ribosome. Biol. Chem. 381, 377–387.

    Article  PubMed  CAS  Google Scholar 

  48. Rodnina M.V., Savelsbergh A., Katunin V.I., Wintermeyer W. 1997. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature. 385, 37–41.

    Article  PubMed  CAS  Google Scholar 

  49. Tomsic J., Vitali L.A., Daviter T., Savelsbergh A., Spurio R., Striebeck P., Wintermeyer W., Rodnina M.V., Gualerzi C.O. 2000. Late events of translation initiation in bacteria: A kinetic analysis. EMBO J. 19, 2127–2136.

    Article  PubMed  CAS  Google Scholar 

  50. Zavialov A.V., Buckingham R.H., Ehrenberg M. 2001. A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell. 107, 115–124.

    Article  PubMed  CAS  Google Scholar 

  51. Pape T., Wintermeyer W., Rodnina M.V. 1998. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J. 17, 7490–7497.

    Article  PubMed  CAS  Google Scholar 

  52. Rodnina M.V., Pape T., Fricke R., Kuhn L., Wintermeyer W. 1996. Initial binding of the elongation factor Tu · GTP · aminoacyl-tRNA complex preceding codon recognition on the ribosome. J. Biol. Chem. 271, 646–652.

    PubMed  CAS  Google Scholar 

  53. Rodnina M.V., Fricke R., Kuhn L., Wintermeyer W. 1995. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. EMBO J. 14, 2613–2619.

    PubMed  CAS  Google Scholar 

  54. Rodnina M.V., Pape T., Fricke R., Wintermeyer W. 1995. Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption. Biochem Cell Biol. 73, 1221–1227.

    PubMed  CAS  Google Scholar 

  55. Savelsbergh A., Katunin V., Mohr D., Peske F., Rodnina M., Wintermeyer W. 2003. An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol. Cell. 11, 1517–1523.

    Article  PubMed  CAS  Google Scholar 

  56. Dell V.A., Miller D.L., Johnson A.E. 1990. Effects of nucleotide-and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study. Biochemistry. 29, 1757–1763.

    Article  PubMed  CAS  Google Scholar 

  57. Rodnina M.V., Pape T., Fricke R., Wintermeyer W. 1995. Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption. Biochem. Cell Biol. 73, 1221–1227.

    PubMed  CAS  Google Scholar 

  58. Parmeggiani A., Sander G. 1981. Properties and regulation of the GTPase activities of elongation factors Tu and G, and of initiation factor 2. Mol. Cell Biochem. 35, 129–158.

    PubMed  CAS  Google Scholar 

  59. Piepenburg O., Pape T., Pleiss J.A., Wintermeyer W., Uhlenbeck O.C., Rodnina M.V. 2000. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Biochemistry. 39, 1734–1738.

    Article  PubMed  CAS  Google Scholar 

  60. Ogle J.M., Brodersen D.E., Clemons W.M. Jr., Tarry M.J., Carter A.P., Ramakrishnan V. 2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 292, 897–902.

    Article  PubMed  CAS  Google Scholar 

  61. Pape T., Wintermeyer W., Rodnina M.V. 2000. Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome. Nature Struct. Biol. 7, 104–107.

    PubMed  CAS  Google Scholar 

  62. Cate J.H., Yusupov M.M., Yusupova G.Z., Earnest T.N., Noller H.F. 1999. X-ray crystal structures of 70S ribosome functional complexes. Science. 285, 2095–2104.

    Article  PubMed  CAS  Google Scholar 

  63. Moazed D., Robertson J.M., Noller H.F. 1988. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 334, 362–364.

    Article  PubMed  CAS  Google Scholar 

  64. Tapprich W.E., Dahlberg A.E. 1990. A single base mutation at position 2661 in E. coli 23S ribosomal RNA affects the binding of ternary complex to the ribosome. EMBO J. 9, 2649–2655.

    PubMed  CAS  Google Scholar 

  65. Sergiev P.V., Bogdanov A.A., Dahlberg A.E., Dontsova O. 2000. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5S ribosomal RNA and the peptidyltransferase region of 23S ribosomal RNA. J. Mol. Biol. 299, 379–389.

    Article  PubMed  CAS  Google Scholar 

  66. Powers T., Noller H.F. 1993. Evidence for functional interaction between elongation factor Tu and 16S ribosomal RNA. Proc. Natl. Acad. Sci. USA. 90, 1364–1368.

    PubMed  CAS  Google Scholar 

  67. O'Connor M., Brunelli C.A., Firpo M.A., Gregory S.T., Lieberman K.R., Lodmell J.S., Moine H., van Ryk D.I., Dahlberg A.E. 1995. Genetic probes of ribosomal RNA function. Biochem. Cell Biol. 73, 859–868.

    PubMed  Google Scholar 

  68. Lodmell J.S., Dahlberg A.E. 1997. A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. Science. 277, 1262–1267.

    Article  PubMed  CAS  Google Scholar 

  69. Yarus M., Smith D. 1995. In: tRNA: Structure, Biosynthesis and Function. Ed. RajBhandary D.S.a.U. Washington: ASM Press, pp. 443–468.

    Google Scholar 

  70. Rodnina M.V., Fricke R., Wintermeyer W. 1994. Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Biochemistry. 33, 12267–12275.

    Article  PubMed  CAS  Google Scholar 

  71. Stark H., Rodnina M.V., Rinke-Appel J., Brimacombe R., Wintermeyer W., van Heel M. 1997. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature. 389, 403–406.

    PubMed  CAS  Google Scholar 

  72. Stark H., Rodnina M.V., Wieden H.J., Zemlin F., Wintermeyer W., van Heel M. 2002. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nature Struct. Biol. 9, 849–854.

    PubMed  CAS  Google Scholar 

  73. Valle M., Sengupta J., Swami N.K., Grassucci R.A., Burkhardt N., Nierhaus K.H., Agrawal R.K., Frank J. 2002. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J. 21, 3557–3567.

    Article  PubMed  CAS  Google Scholar 

  74. Valle M., Zavialov A., Li W., Stagg S.M., Sengupta J., Nielsen R.C., Nissen P., Harvey S.C., Ehrenberg M., Frank J. 2003. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nature Struct. Biol. 10, 899–906.

    Article  PubMed  CAS  Google Scholar 

  75. Ban N., Nissen P., Hansen J., Capel M., Moore P.B., Steitz T.A. 1999. Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit. Nature. 400, 841–847.

    PubMed  CAS  Google Scholar 

  76. Katunin V.I., Savelsbergh A., Rodnina M.V., Wintermeyer W. 2002. Coupling of GTP hydrolysis by elongation factor G to translocation and factor recycling on the ribosome. Biochemistry. 41, 12806–12812.

    Article  PubMed  CAS  Google Scholar 

  77. Peske F., Savelsbergh A., Katunin V.I., Rodnina M.V., Wintermeyer W. 2004. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J. Mol. Biol. 343, 1183–1194.

    Article  PubMed  CAS  Google Scholar 

  78. Spirin A.S. 1968. On the mechanism of ribosome functioning: Subunit association-dissociation hypothesis. Dokl. Akad. Nauk SSSR. 179, 1467–1470.

    PubMed  CAS  Google Scholar 

  79. Gavrilova L.P., Spirin A.S. 1973. “Nonenzymatic” translation. Zh. Evol. Biokhim. Fiziol. 9, 3–13.

    PubMed  CAS  Google Scholar 

  80. Gavrilova L.P., Spirin A.S. 1972. Studies on the mechanism of translocation in ribosomes: 2. Activation of spontaneous (“nonenzymatic”) translocation in Escherichia coli ribosomes with parachloromercury benzoate. Mol. Biol. 6, 248–254.

    PubMed  CAS  Google Scholar 

  81. Wintermeyer W., Savelsbergh A., Semenkov Y.P., Katunin V.I., Rodnina M.V. 2001. Mechanism of elongation factor G function in tRNA translocation on the ribosome. Cold Spring Harbor Symp. Quant. Biol. 66, 449–458.

    Article  PubMed  CAS  Google Scholar 

  82. Stark H., Rodnina M.V., Wieden H.J., van Heel M., Wintermeyer W. 2000. Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell. 100, 301–309.

    Article  PubMed  CAS  Google Scholar 

  83. Agrawal R.K., Heagle A.B., Penczek P., Grassucci R.A., Frank J. 1999. EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nature Struct. Biol. 6, 643–647.

    Article  PubMed  CAS  Google Scholar 

  84. Kubarenko A.V., Lavrik I.N., Sergiev P.V., Heupl M., Rodnina M., Wintermeyer W., Bogdanov A.A., Dontsova O.A. 2003. Contacts of elongation factor G with the small ribosomal subunit: Crosslinking approach. Dokl. Biochem. Biophys. 393, 312–314.

    Article  PubMed  CAS  Google Scholar 

  85. Agrawal R.K., Penczek P., Grassucci R.A., Frank J. 1998. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl. Acad. Sci. USA. 95, 6134–6138.

    Article  PubMed  CAS  Google Scholar 

  86. Wilson K.S., Noller H.F. 1998. Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell. 92, 131–139.

    PubMed  CAS  Google Scholar 

  87. Yusupov M.M., Yusupova G.Z., Baucom A., Lieberman K., Earnest T.N., Cate J.H., Noller H.F. 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science. 292, 883–896.

    Article  PubMed  CAS  Google Scholar 

  88. Frank J., Agrawal R.K. 2000. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature. 406, 318–322.

    Article  PubMed  CAS  Google Scholar 

  89. Gualerzi C.O., Brandi L., Caserta E., La Teana A., Spurio R., Tomsic J., Pon C.L. 2000. In: The Ribosome: Structure, Function, Antibiotics and Cellular Interactions. Eds. Garrett R.A. et al. Washington: ASM Press, pp. 477–494.

    Google Scholar 

  90. Scolnick E., Tompkins R., Caskey T., Nirenberg M. 1968. Release factors differing in specificity for terminator codons. Proc. Natl. Acad. Sci. USA. 61, 768–774.

    PubMed  CAS  Google Scholar 

  91. Kisselev L.L., Buckingham R.H. 2000. Translational termination comes of age. Trends Biochem. Sci. 25, 561–566.

    Article  PubMed  CAS  Google Scholar 

  92. Frolova L., Le Goff X., Rasmussen H.H., Cheperegin S., Drugeon G., Kress M., Arman I., Haenni A.L., Celis J.E., Philippe M., Justesen J., Kisselev L.L. 1994. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature. 372, 701–703.

    Article  PubMed  CAS  Google Scholar 

  93. Milman G., Goldstein J., Scolnick E., Caskey T. 1969. Peptide chain termination: 3. Stimulation of in vitro termination. Proc. Natl. Acad. Sci. USA. 63, 183–190.

    PubMed  CAS  Google Scholar 

  94. Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., Philippe M. 1995. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14, 4065–4072.

    PubMed  CAS  Google Scholar 

  95. Grentzmann G., Brechemier-Baey D., Heurgue V., Mora L., Buckingham R.H. 1994. Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc. Natl. Acad. Sci. USA. 91, 5848–5852.

    PubMed  CAS  Google Scholar 

  96. Mikuni O., Ito K., Moffat J., Matsumura K., McCaughan K., Nobukuni T., Tate W., Nakamura Y. 1994. Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proc. Natl. Acad. Sci. USA. 91, 5798–5802.

    PubMed  CAS  Google Scholar 

  97. Freistroffer D.V., Pavlov M.Y., MacDougall J., Buckingham R.H., Ehrenberg M. 1997. Release factor RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 16, 4126–4133.

    Article  PubMed  CAS  Google Scholar 

  98. Goldstein J.L., Caskey C.T. 1970. Peptide chain termination: effect of protein S on ribosomal binding of release factors. Proc. Natl. Acad. Sci. USA. 67, 537–543.

    PubMed  CAS  Google Scholar 

  99. Pel H.J., Moffat J.G., Ito K., Nakamura Y., Tate W.P. 1998. Escherichia coli release factor 3: Resolving the paradox of a typical G protein structure and atypical function with guanine nucleotides. RNA. 4, 47–54.

    PubMed  CAS  Google Scholar 

  100. Frolova L., Le Goff X., Zhouravleva G., Davydova E., Philippe M., Kisselev L. 1996. Eukaryotic polypeptide chain release factor eRF3 is an eRF1-and ribosome-dependent guanosine triphosphatase. RNA. 2, 334–341.

    PubMed  CAS  Google Scholar 

  101. Zavialov A.V., Mora L., Buckingham R.H., Ehrenberg M. 2002. Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Mol. Cell. 10, 789–798.

    Article  PubMed  CAS  Google Scholar 

  102. Ott G., Faulhammer H.G., Sprinzl M. 1989. Interaction of elongation factor Tu from Escherichia coli with aminoacyl-tRNA carrying a fluorescent reporter group on the 3′ terminus. Eur. J. Biochem. 184, 345–352.

    Article  PubMed  CAS  Google Scholar 

  103. Abrahamson J.K., Laue T.M., Miller D.L., Johnson A.E. 1985. Direct determination of the association constant between elongation factor Tu X GTP and aminoacyl-tRNA using fluorescence. Biochemistry. 24, 692–700.

    Article  PubMed  CAS  Google Scholar 

  104. Baca O.G., Rohrbach M.S., Bodley J.W. 1976. Equilibrium measurements of the interactions of guanine nucleotides with Escherichia coli elongation factor G and the ribosome. Biochemistry. 15, 4570–4574.

    Article  PubMed  CAS  Google Scholar 

  105. Gromadski K.B., Wieden H.J., Rodnina M.V. 2002. Kinetic mechanism of elongation factor Ts-catalyzed nucleotide exchange in elongation factor Tu. Biochemistry. 41, 162–169.

    Article  PubMed  CAS  Google Scholar 

  106. Wittinghofer F. 1998. Ras signalling. Caught in the act of the switch-on. Nature. 394, 317–320.

    Article  PubMed  CAS  Google Scholar 

  107. Nixon A.E., Brune M., Lowe P.N., Webb M.R. 1995. Kinetics of inorganic phosphate release during the interaction of p21ras with the GTPase-activating proteins, p120-GAP and neurofibromin. Biochemistry. 34, 15592–15598.

    Article  PubMed  CAS  Google Scholar 

  108. Ting T.D., Ho Y.K. 1991. Molecular mechanism of GTP hydrolysis by bovine transducin: pre-steady-state kinetic analyses. Biochemistry. 30, 8996–9007.

    Article  PubMed  CAS  Google Scholar 

  109. Traut R.R., Dey D., Bochkariov D.E., Oleinikov A.V., Jokhadze G.G., Hamman B., Jameson D. 1995. Location and domain structure of Escherichia coli ribosomal protein L7/L12: Site specific cysteine crosslinking and attachment of fluorescent probes. Biochem. Cell Biol. 73, 949–958.

    Article  PubMed  CAS  Google Scholar 

  110. Gudkov A.T., Bubunenko M.G. 1989. Conformational changes in ribosomes upon interaction with elongation factors. Biochimie. 71, 779–785.

    Article  PubMed  CAS  Google Scholar 

  111. Wahl M.C., Bourenkov G.P., Bartunik H.D., Huber R. 2000. Flexibility, conformational diversity and two dimerization modes in complexes of ribosomal protein L12. EMBO J. 19, 174–186.

    Article  PubMed  CAS  Google Scholar 

  112. Mohr D., Wintermeyer W., Rodnina M.V. 2002. GTPase activation of elongation factors Tu and G on the ribosome. Biochemistry. 41, 12520–12528.

    Article  PubMed  CAS  Google Scholar 

  113. Zeidler W., Egle C., Ribeiro S., Wagner A., Katunin V., Kreutzer R., Rodnina M., Wintermeyer W., Sprinzl M. 1995. Site-directed mutagenesis of Thermus thermophilus elongation factor Tu. Replacement of His85, Asp81 and Arg300. Eur. J. Biochem. 229, 596–604.

    Article  PubMed  CAS  Google Scholar 

  114. Daviter T., Wieden H.J., Rodnina M.V. 2003. Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. J. Mol. Biol. 332, 689–699.

    Article  PubMed  CAS  Google Scholar 

  115. Savelsbergh A., Mohr D., Wilden B., Wintermeyer W., Rodnina M.V. 2000. Stimulation of the GTPase activity of translation elongation factor G by ribosomal protein L7/12. J. Biol. Chem. 275, 890–894.

    Article  PubMed  CAS  Google Scholar 

  116. Stoffler G., Cundliffe E., Stoffler-Meilicke M., Dabbs E.R. 1980. Mutants of Escherichia coli lacking ribosomal protein L11. J. Biol. Chem. 255, 10517–10522.

    PubMed  CAS  Google Scholar 

  117. Rodnina M.V., Savelsbergh A., Matassova N.B., Katunin V.I., Semenkov Y.P., Wintermeyer W. 1999. Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. Proc. Natl. Acad. Sci. USA. 96, 9586–9590.

    Article  PubMed  CAS  Google Scholar 

  118. Savelsbergh A., Matassova N.B., Rodnina M.V., Wintermeyer W. 2000. Role of domains 4 and 5 in elongation factor G functions on the ribosome. J. Mol. Biol. 300, 951–961.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 5, 2005, pp. 746–761.

Original Russian Text Copyright © 2005 by Kubarenko, Sergiev, Rodnina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubarenko, A.V., Sergiev, P.V. & Rodnina, M.V. GTPases of the Translation Apparatus. Mol Biol 39, 646–660 (2005). https://doi.org/10.1007/s11008-005-0080-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0080-2

Key words

Navigation