Skip to main content
Log in

The Serpentine Representation of the Infinite Symmetric Group and the Basic Representation of the Affine Lie Algebra \({\widehat{\mathfrak{sl}_2}}\)

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce and study the so-called serpentine representations of the infinite symmetric group \({\mathfrak{S}_\mathbb{N}}\), which turn out to be closely related to the basic representation of the affine Lie algebra \({\widehat{\mathfrak{sl}_2}}\) and representations of the Virasoro algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck J., Frenkel I., Jing N.: Canonical basis and Macdonald polynomials. Adv. Math. 140(1), 95–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Feigin, B.; Feigin, E.: Integrable \({\widehat{\mathfrak{sl}_2}}\)-modules as infinite tensor products. In: Fundamental Mathematics Today, pp. 304–334. Independent University of Moscow, Moscow (2003)

  3. Feigin B., Feigin E.: Principal subspace for the bosonic vertex operator \({\phi_{\sqrt{2m}}(z)}\) and Jack polynomials. Adv. Math. 206, 307–328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Feigin, B., Loktev, S.: On generalized Kostka polynomials and quantum Verlinde rule. In: Differential Topology, Infinite-Dimensional Lie algebras, and Applications. American Mathematical Society Translations Series 2, vol. 194, pp. 61–79 (1999)

  5. Frenkel I.B., Kac V.G.: Basic representations of affine Lie algebras and dual resonance models. Invent. Math. 62, 23–66 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

  7. Kedem R.: Fusion products, cohomology of GL N flag manifolds, and Kostka polynomials. Int. Math. Res. Not. 2004(25), 1273–1298 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lascoux A., Schützenberger M.P.: Sur une conjecture de H.O. Foulkes. C. R. Acad. Sci. Paris 286A, 323–324 (1978)

    Google Scholar 

  9. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford University Press, New York (1995)

  10. Segal G.B.: Unitary representations of some infinite-dimensional groups. Comm. Math. Phys. 80, 301–342 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (2001)

  12. Tsilevich N., Vershik A.: Infinite-dimensional Schur–Weyl duality and the Coxeter–Laplace operator. Comm. Math. Phys. 327(3), 873–885 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Virasoro M.A.: Subsidiary conditions and ghosts in dual resonance models. Phys. Rev. D 1, 2933–2936 (1970)

    Article  ADS  Google Scholar 

  14. Wasserman, A.: Direct proof of the Feigin–Fuchs character formula for unitary representations of the Virasoro algebra. arXiv:1012.6003v

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly M. Vershik.

Additional information

Supported by the grants RFBR 13-01-12422-ofi-m and RFBR 14-01-00373-a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsilevich, N.V., Vershik, A.M. The Serpentine Representation of the Infinite Symmetric Group and the Basic Representation of the Affine Lie Algebra \({\widehat{\mathfrak{sl}_2}}\) . Lett Math Phys 105, 11–25 (2015). https://doi.org/10.1007/s11005-014-0737-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-014-0737-7

Mathematics Subject Classification

Keywords

Navigation