Skip to main content

Advertisement

Log in

Analysing Pairwise Logratios Revisited

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Even though the logratio methodology provides a range of both generic, mostly exploratory, and purpose-built coordinate representations of compositional data, simple pairwise logratios are preferred by many for multivariate analysis in the geochemical practice, principally because of their simpler interpretation. However, the logratio coordinate systems that incorporate them are predominantly oblique, resulting in both conceptual and practical problems. We propose a new approach, called backwards pivot coordinates, where each pairwise logratio is linked to one orthogonal coordinate system, and these systems are then used together to produce a concise output. In this work, principal component analysis and regression with compositional explanatory variables are used as primary methods to demonstrate the methodological and interpretative advantages of the proposal. In the applied part of this study, sediment compositions from the Jizera River, Czech Republic, were analysed using these techniques through backwards pivot coordinates. This allowed us to discuss grain size control of the element composition of sediments and clearly distinguish anthropogenically contaminated and uncontaminated strata in sediment depth profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Data are available from the authors on request.

References

  • Aitchison J (1982) The statistical analysis of compositional data (with discussion). J R Stat Soc Ser B (Stat Methodol) 44(2):139–177

    Google Scholar 

  • Aitchison J (1983) Principal component analysis of compositional data. Biometrika 70(1):57–65

    Article  Google Scholar 

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman & Hall, London (Reprinted in 2003 with additional material by The Blackburn Press)

  • Aitchison J, Greenacre M (2002) Biplots for compositional data. J R Stat Soc Ser C (Appl Stat) 51(4):375–392

    Article  Google Scholar 

  • Álvarez-Vázquez MÁ, Hošek M, Elznicová J, Pacina J, Hron K, Fačevicová K, Talská R, Bábek O, Matys Grygar T (2020) Separation of geochemical signals in fluvial sediments: new approaches to grain-size control and anthropogenic contamination. Appl Geochem 123:104791

    Article  Google Scholar 

  • Bábek O, Matys Grygar T, Faměra M, Hron K, Nováková T, Sedláček J (2015) How to separate the effects of sediment provenance and grain size with statistical rigour? Catena 135:240–253

    Article  Google Scholar 

  • Billheimer D, Guttorp P, Fagan W (2001) Statistical interpretation of species composition. J Am Stat Assoc 96(456):1205–1214

    Article  Google Scholar 

  • Bouchez J, Lupker M, Gaillardet J, France-Lanord C, Maurice L (2011) How important is it to integrate riverine suspended sediment chemical composition with depth? Clues from Amazon river depth-profiles. Geochim Cosmochim Acta 75(22):6955–6970

    Article  Google Scholar 

  • Buccianti A (2013) Is compositional data analysis a way to see beyond the illusion? Comput Geosci 50:165–173

    Article  Google Scholar 

  • Chen JB, Gaillardet J, Bouchez J, Louvat P, Wang YN (2014) Anthropophile elements in river sediments: overview from the Seine River, France. Geochem Geophys Geosyst 15:4526–4546

    Article  Google Scholar 

  • Coenders G, Pawlowsky-Glahn V (2020) On interpretations of tests and effect sizes in regression models with a compositional predictor. SORT 44(1):201–220

    Google Scholar 

  • Egozcue JJ (2009) Reply to “On the Harker variation diagrams;...” by J.A. Cortés. Math Geosci 41(7):829–834

    Article  Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V (2005) Groups of parts and their balances in compositional data analysis. Math Geol 37(7):795–828

    Article  Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35(3):279–300

    Article  Google Scholar 

  • Egozcue JJ, Daunis-i Estadella J, Pawlowsky-Glahn V, Hron K, Filzmoser P (2012) Simplicial regression. The normal model. J Appl Probab Stat 6(1–2):87–108

    Google Scholar 

  • Erb I (2020) Partial correlations in compositional data analysis. Appl Comput Geosci 6:100026

    Article  Google Scholar 

  • Faměra M, Matys Grygar T, Elznicová J, Grison H (2018) Geochemical normalization of magnetic susceptibility for investigation of floodplain sediments. Environ Earth Sci 77:189

    Article  Google Scholar 

  • Filzmoser P, Hron K (2008) Outlier detection for compositional data using robust methods. Math Geosci 40(3):233–248

    Article  Google Scholar 

  • Filzmoser P, Hron K (2019) Comments on: Compositional data: the sample space and its structure. TEST 28(3):639–643

    Article  Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2009) Principal component analysis for compositional data with outliers. Environmetrics 20:621–632

    Article  Google Scholar 

  • Filzmoser P, Hron K, Templ M (2012) Discriminant analysis for compositional data and robust parameter estimation. Comput Stat 27(4):585–604

    Article  Google Scholar 

  • Filzmoser P, Hron K, Templ M (2018) Applied compositional data analysis. Springer series in statistics. Springer, Cham

    Book  Google Scholar 

  • Fišerová E, Hron K (2011) On interpretation of orthonormal coordinates for compositional data. Math Geosci 43(4):455–468

    Article  Google Scholar 

  • Greenacre M (2018a) Compositional data in practice. CRC Press, Boca Raton

  • Greenacre M (2018b) Variable selection in compositional data analysis using pairwise logratios. Math Geosci 51:649–682

  • Greenacre M (2019) Comments on: Compositional data: the sample space and its structure. TEST 28(3):644–652

    Article  Google Scholar 

  • Grosbois C, Meybeck M, Lestel L, Lefévre I, Moatar F (2012) Severe and contrasted polymetallic contamination patterns (1900–2009) in the Loire River sediments (France). Sci Total Environ 435:290–305

    Article  Google Scholar 

  • Guo YL, Yang SY, Su N, Li C, Yin P, Wang ZB (2018) Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices. Geochim Cosmochim Acta 227:48–63

    Article  Google Scholar 

  • Hron K, Filzmoser P, Thompson K (2012) Linear regression with compositional explanatory variables. J Appl Stat 39(5):1115–1128

    Article  Google Scholar 

  • Hron K, Filzmoser P, de Caritat P, Fišerová E, Gardlo A (2017) Weighted pivot coordinates for compositional data and their application to geochemical mapping. Math Geosci 49(6):797–814

    Article  Google Scholar 

  • Johnson R, Wichern D (2007) Applied multivariate statistical analysis, 6th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kalivodová A, Hron K, Filzmoser P, Najdekr L, Janečková H, Adam T (2015) PLS-DA for compositional data with application to metabolomics. J Chemom 29(1):21–28

    Article  Google Scholar 

  • Kynčlová P, Filzmoser P, Hron K (2016) Compositional biplots including external non-compositional variables. Statistics 50(5):1132–1148

    Article  Google Scholar 

  • Maechler M, Rousseeuw P, Croux C, Todorov V, Ruckstuhl A, Salibian-Barrera M, Verbeke T, Koller M, Conceicao E, di Palma M (2020) robustbase: basic robust statistics. R package version 0.93-6

  • Maronna R, Martin D, Yohai V (2006) Robust statistics: theory and methods. Wiley, Chichester

    Book  Google Scholar 

  • Martín-Fernández J (2019) Comments on: Compositional data: the sample space and its structure. TEST 28(3):653–657

    Article  Google Scholar 

  • Matys Grygar T, Popelka J (2016) Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. J Geochem Explor 170:39–57

    Article  Google Scholar 

  • Matys Grygar T, Nováková T, Bábek O, Elznicová J, Vadinová N (2013) Robust assessment of moderate heavy metal contamination levels in floodplain sediments: A case study on the Jizera River, Czech Republic. Sci Total Environ 452:233–245

    Article  Google Scholar 

  • Matys Grygar T, Elznicová J, Bábek O, Hošek M, Engel Z, Kiss T (2014) Obtaining isochrones from pollution signals in a fluvial sediment record: a case study in a uranium-polluted floodplain of the Ploučnice River, Czech Republic. Appl Geochem 48:1–15

    Article  Google Scholar 

  • Matys Grygar T, Hošek M, Pacina J, Štojdl J, Bábek O, Sedláček J, Hron K, Talská R, Křiženecká S, Tolaszová J (2018) Changes in the geochemistry of fluvial sediments after dam construction (the Chrudimka River, the Czech Republic). Appl Geochem 98:94–108

    Article  Google Scholar 

  • Matys Grygar T, Mach K, Martinez M (2019) Checklist for the use of potassium concentrations in siliciclastic sediments as paleoenvironmental archives. Sed Geol 382:75–84

    Article  Google Scholar 

  • McGregor DE, Palarea-Albaladejo J, Dall PM, Hron K, Chastin SF (2020) Cox regression survival analysis with compositional covariates: application to modelling mortality risk from 24-h physical activity patterns. Stat Methods Med Res 29(5):1447–1465

    Article  Google Scholar 

  • Müller I, Hron K, Fišerová E, Šmahaj J, Cakirpaloglu P, Vančáková J (2018) Interpretation of compositional regression with application to time budget analysis. Austrian J Stat 47(2):3–19

    Article  Google Scholar 

  • Palarea-Albaladejo J, Martín-Fernández JA, Soto JA (2012) Dealing with distances and transformations for fuzzy c-means clustering of compositional data. J Classif 29(2):144–169

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Buccianti A (eds) (2011) Compositional data analysis: theory and applications. Wiley, Chichester

    Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ (2001) Geometric approach to statistical analysis on the simplex. Stochastic Environmental Research and Risk Assessment (SERRA) 15(5):384–398

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R (2015) Modeling and analysis of compositional data. Wiley, Chichester

    Google Scholar 

  • Reid M, Spencer KL (2009) Use of principal components analysis (PCA) on estuarine sediment datasets: The effect of data pre-treatment. Environ Pollut 157:2281–2275

    Article  Google Scholar 

  • Sohn M, Li H (2019) Compositional mediation analysis for microbiome studies. Ann Appl Stat 13(1):661–681

    Article  Google Scholar 

  • Thomas CW, Aitchison J (2005) Compositional data analysis of geological variability and process: a case study. Math Geol 37(7):753–772

    Article  Google Scholar 

  • Thomas C, Aitchison J (2006) Log-ratios and geochemical discrimination of Scottish Dalradian limestones: a case study. In: Buccianti A, Mateu-Figueras G, Pawlowsky-Glahn V (eds) Compositional data analysis in the geosciences: from theory to practice. Geological Society, London, pp 25–41

    Google Scholar 

  • Tolosana-Delgado R, van den Boogaart K (2011) Linear models with compositions in R. In: Pawlowsky-Glahn V, Buccianti A (eds) Compositional data analysis: theory and applications. Wiley, Chichester, pp 356–371

    Chapter  Google Scholar 

  • Tolosana-Delgado R, Talebi H, Khodadadzadeh M, Van den Boogaart K (2019) On machine learning algorithms and compositional data. In: Ortego M (ed) Proceedings of the 8th international workshop on compositional data analysis (CoDaWork2019): Terrassa, 3–8 June, 2019, Universitat Politècnica de Catalunya-BarcelonaTECH, pp 172–175

  • van den Boogaart K, Tolosana-Delgado R (2013) Analyzing compositional data with R. Springer, Heidelberg

    Book  Google Scholar 

  • van den Boogaart K, Filzmoser P, Hron K, Templ M, Tolosana-Delgado R (2020) Classical and robust regression analysis with compositional data. Math Geosci 1–36 https://doi.org/10.1007/s11004-020-09895-w

  • Vencálek O, Hron L, Filzmoser P (2020) A comparison of generalised linear models and compositional models for ordered categorical data. Stat Model 20(3):249–273

    Article  Google Scholar 

  • von Eynatten H, Tolosana-Delgado R, Karius V, Bachmann K, Caracciolo L (2016) Sediment generation in humid Mediterranean setting: grain-size and source-rock control on sediment geochemistry and mineralogy (Sila Massif, Calabria). Sed Geol 336:68–80

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to Štěpánka Tůmová (IIC Řež) for providing the digital terrain model of the sampling site. KH, PF, MF and TMG gratefully acknowledge the support of the Czech Science Foundation GA19-01768S. GC and JPA were supported by the Spanish Ministry of Science, Innovation and Universities under the project CODAMET (RTI2018-095518-B-C21, 2019-2021).

Author information

Authors and Affiliations

Authors

Contributions

KH, GC and TMG conceived this research and designed the experiments; TMG provided the geochemical dataset and interpretations; GC and PF performed the experiments and analysis; KH and GC wrote the first draft of the paper and KH, GC, TMG, PF and JPA all participated in the revisions of it; MF planned and performed sediment sampling, which represented the studied floodplain, and supervised sediment analyses.

Corresponding author

Correspondence to Karel Hron.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hron, K., Coenders, G., Filzmoser, P. et al. Analysing Pairwise Logratios Revisited. Math Geosci 53, 1643–1666 (2021). https://doi.org/10.1007/s11004-021-09938-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-021-09938-w

Keywords

Navigation