Skip to main content

Advertisement

Log in

Reconstruction of Incomplete Data Sets or Images Using Direct Sampling

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

With increasingly sophisticated acquisition methods, the amount of data available for mapping physical parameters in the geosciences is becoming enormous. If the density of measurements is sufficient, significant non-parametric spatial statistics can be derived from the data. In this context, we propose to use and adapt the Direct Sampling multiple-points simulation method (DS) for the reconstruction of partially informed images. The advantage of the proposed method is that it can accommodate any data disposition and that it can indifferently deal with continuous and categorical variables. The spatial patterns found in the data are mimicked without model inference. Therefore, very few assumptions are required to define the spatial structure of the reconstructed fields, and very limited parameterization is needed to make the proposed approach extremely simple from a user perspective. The different examples shown in this paper give appealing results for the reconstruction of complex 3D geometries from relatively small data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arpat B, Caers J (2007) Conditional simulations with patterns. Math Geol 39(2):177–203

    Article  Google Scholar 

  • Bersezio R, Giudici M, Mele M (2007) Combining sedimentological and geophysical data for high resolution 3-d mapping of fluvial architectural elements in the quaternary Po Plain (Italy). Sediment Geol 202:230–247

    Article  Google Scholar 

  • Carle SF, Fogg GE (1997) Modeling spatial variability with one and multi-dimensional continuous Markov chains. Math Geol 7(29):891–918

    Article  Google Scholar 

  • Cornacchiulo D, Bagtzoglou C (2004) Geostatistical reconstruction of gaps in near-surface electrical resistivity data. Vadose Zone J 3:1215–1229

    Article  Google Scholar 

  • dell’Arciprete D, Felletti F, Bersezio R (2008) Simulation of fine-scale heterogeneity of meandering river aquifer analogues: comparing different approaches, paper presented at geoENV 2008. Southampton, 8–10 September, 2008

  • Deutsch C, Journel A (1992) GSLIB: geostatistical software library. Oxford University Press, Oxford

    Google Scholar 

  • Deutsch C, Tran T (2002) FLUVSIM: A program for object-based stochastic modeling of fluvial depositional systems. Comput Geosci 2002(28):525–535

    Google Scholar 

  • Fiorucci P, La Barbera P, Lanza L, Minciardi R (2001) A geostatistical approach to multisensor rain field reconstruction and downscaling. Hydrol Earth Syst Sci 5(2):201–213

    Article  Google Scholar 

  • Gómez-Hernández JJ, Wen X-H (1998) To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology. Adv Water Resour 21(1):47–61

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, Oxford

    Google Scholar 

  • Guadagnini L, Guadagnini A, Tartakovski D (2004) Probabilistic reconstruction of geologic facies. J Hydrol 294:57–67

    Article  Google Scholar 

  • Guardiano F, Srivastava M (1993) Multivariate geostatistics: beyond bivariate moments. In: Geostatistics-Troia. Kluwer Academic, Amsterdam, pp 133–144

    Google Scholar 

  • Hurley N, Zhang T (2009) Method to generate fullbore images using borehole images and multi-point statistics. In: SPE middle east oil and gas show and conference, 15–18 March 2009, Bahrain, Bahrain

  • Journel A, Isaaks E (1984) Conditional indicator simulation: application to a Saskatchewan deposit. Math Geol 16(7):685–718

    Article  Google Scholar 

  • Journel A, Zhang T (2006) The necessity of a multiple-point prior model. Math Geol 38(5):591–610

    Article  Google Scholar 

  • Kerrou J, Renard P, Hendricks-Franssen H-J, Lunati I (2008) Issues in characterizing heterogeneity and connectivity in non-multi-Gaussian media. Adv Water Resour 31(1):147–159

    Article  Google Scholar 

  • Khoshbakht F, Memarian H, Mohammadnia M (2009) Comparison of Asmari, Pabdeh and Gurpi formation’s fractures, derived from image log. J Petroleum Sci Eng 67(1–2):65–74

    Article  Google Scholar 

  • Kitanidis P (1986) Parameter uncertainty in estimation of spatial functions: Bayesian analysis. Water Resour Res 22(4):499–507

    Article  Google Scholar 

  • Kostic B, Aigner T (2007) Sedimentary architecture and 3-D ground penetrating radar analysis of gravelly meandering river deposits (Neckar valley, SW Germany). Sedimentology 54:789–808

    Article  Google Scholar 

  • Kumar D, Ahmed S (2008) Reconstruction of water level time series in an aquifer using geostatistical technique. In: Groundwater dynamics in hard rock aquifers. Springer, Berlin, pp 191–200

    Chapter  Google Scholar 

  • Lantuéjoul C (2002) Geostatistical simulation. Models and algorithms. Springer, Berlin

    Google Scholar 

  • Lefranc M, Beaudoin B, Chiles J-P, Guillemot D, Ravenne C, Trouiller A (2008) Geostatistical characterization of Callovo–Oxfordian clay variability from high-resolution log data. Phys Chem Earth, Parts A/B/C 33(Supplement 1):S2–S13

    Article  Google Scholar 

  • Marache A, Riss J, Gentier S, Chiles J-P (2002) Characterization and reconstruction of a rock fracture surface by geostatistics. Int J Numer Anal Methods Geomech 26(9):873–896

    Article  Google Scholar 

  • Mariethoz G (2009) Geological stochastic imaging for aquifer characterization. University of Neuchâtel, Neuchâtel, Switzerland

  • Mariethoz G, Renard P, Cornaton F, Jaquet O (2009a) Truncated pluri-Gaussian simulations to characterize aquifer heterogeneity. Ground Water 47(1):13–24

    Article  Google Scholar 

  • Mariethoz G, Renard P, Froidevaux R (2009b) Integrating collocated auxiliary parameters in geostatistical simulations using joint probability distributions and probability aggregation. Water Resour Res 45:W08421

    Article  Google Scholar 

  • Mariethoz G (2010, in press) A general parallelization strategy for random path based geostatistical simulation methods. Comput Geosci

  • Mariethoz G, Renard P, Straubhaar J (2010, submitted) The direct sampling method to perform multiple-points simulations. Water Resour Res

  • Miall A (1996) The geology of fluvial deposits. Springer, New York

    Google Scholar 

  • Mosley P (1982) Analysis of the effect of changing discharge on channel morphology and instream uses in a Braided river, Ohau river, New Zealand. Water Resour Res 18(4):800–812

    Article  Google Scholar 

  • Nichols G (1999) Sedimentology and stratigraphy. Blackwell, London

    Google Scholar 

  • Okabe H, Blunt M (2004) Multiple-point statistics to generate pore space images. In: Geostatistics Banff. Springer, Berlin, pp 763–768

    Google Scholar 

  • Ortiz JM, Deutsch CV (2004) Indicator simulation accounting for multiple-point statistics. Math Geol 36(5):545–565

    Article  Google Scholar 

  • Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS: A user’s guide. Cambridge University Press, Cambridge

    Google Scholar 

  • Renard P, Gómez-Hernández J, Ezzedine S (2005) Characterization of porous and fractured media. In: Encyclopedia of hydrological sciences. Wiley, New York

    Google Scholar 

  • Rubin Y, Lunt I, Bridge J (2006) Spatial variability in river sediments and its link with river channel geometry. Water Resour Res 42:W06D16

    Article  Google Scholar 

  • Saripally I (2008) Evaluating data conditioning accuracy of MPS algorithms and the impact on flow modeling. In: 21th SCRF Meeting, Stanford University, May 8–9, 2008

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Techn J 27:379–423

    Google Scholar 

  • Straubhaar J, Walgenwitz A, Renard P, Froidevaux R (2008) Optimization issues in 3D multipoint statistics simulation, paper presented. Geostats 2008, 1–5 Dec 2008, Santiago, Chile

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple point statistics. Math Geol 34(1):1–22

    Article  Google Scholar 

  • Strebelle S, Payrazyan KJC (2002) Modeling of a deepwater turbidite reservoir conditional to seismic data using multiple-point geostatistics. In: The 2002 SPE annual technical conference and exhibition. San Antonio, September 29–October 2, SPE paper 77425

  • Wu H, Pollard D (2002) Imaging 3-D fracture networks around boreholes. AAPG Bull 86(4):593–604

    Google Scholar 

  • Wu J, Boucher A, Zhang T (2008) A SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM. Comput Geosci 34(12):1863–1876

    Article  Google Scholar 

  • Youngseuk K, Mukerji T, Amos N (2004) Permeability prediction from thin sections: 3D reconstruction and Lattice–Boltzmann flow simulation. Geophys Res Lett 31:(L04606)

    Article  Google Scholar 

  • Zappa G, Bersezio R, Felletti F, Giudici M (2005) Modeling heterogeneity of gravel-sand, braided stream, alluvial aquifers at the facies scale. J Hydrol 325(1–4):134–153

    Google Scholar 

  • Zhang T, Switzer P, Journel A (2006) Filter-based classification of training image patterns for spatial simulation. Math Geol 38(1):63–80

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregoire Mariethoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariethoz, G., Renard, P. Reconstruction of Incomplete Data Sets or Images Using Direct Sampling. Math Geosci 42, 245–268 (2010). https://doi.org/10.1007/s11004-010-9270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-010-9270-0

Keywords

Navigation