Skip to main content
Log in

Conditional Probability Density Functions of Concentrations for Mixing-Controlled Reactive Transport in Heterogeneous Aquifers

  • Special Issue
  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

This paper presents an approach conducive to an evaluation of the probability density function (pdf) of spatio-temporal distributions of concentrations of reactive solutes (and associated reaction rates) evolving in a randomly heterogeneous aquifer. Most existing approaches to solute transport in heterogeneous media focus on providing expressions for space–time moments of concentrations. In general, only low order moments (unconditional or conditional mean and covariance) are computed. In some cases, this allows for obtaining a confidence interval associated with predictions of local concentrations. Common applications, such as risk assessment and vulnerability practices, require the assessment of extreme (low or high) concentration values. We start from the well-known approach of deconstructing the reactive transport problem into the analysis of a conservative transport process followed by speciation to (a) provide a partial differential equation (PDE) for the (conditional) pdf of conservative aqueous species, and (b) derive expressions for the pdf of reactive species and the associated reaction rate. When transport at the local scale is described by an Advection Dispersion Equation (ADE), the equation satisfied by the pdf of conservative species is non-local in space and time. It is similar to an ADE and includes an additional source term. The latter involves the contribution of dilution effects that counteract dispersive fluxes. In general, the PDE we provide must be solved numerically, in a Monte Carlo framework. In some cases, an approximation can be obtained through suitable localization of the governing equation. We illustrate the methodology to depict key features of transport in randomly stratified media in the absence of transverse dispersion effects. In this case, all the pdfs can be explicitly obtained, and their evolution with space and time is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andricevic R, Cvetkovic V (1998) Relative dispersion for solute flux in aquifers. J Fluid Mech 361:145–174

    Article  Google Scholar 

  • Bellin A, Tonina D (2007) Probability density function of non-reactive solute concentration in heterogeneous porous formations. J Contam Hydrol 94(1–2):109–125

    Article  Google Scholar 

  • Bellin A, Rubin Y, Rinaldo A (1994) Eulerian–Lagrangian approach for modeling of flow and transport in heterogeneous geological formations. Water Resour Res 30(11):2913–2924

    Article  Google Scholar 

  • Botter GE, Daly A, Porporato I, Rodriguez-Iturbe I, Rinaldo A (2008) Probabilistic dynamics of soil nitrate: coupling of ecohydrological and biogeochemical processes. Water Resour Res 44:W03416. doi:10.129/2007WR006108

    Article  Google Scholar 

  • Caroni E, Fiorotto V (2005) Analysis of concentration as sampled in natural aquifers. Transp Porous Media 59(1):19–45

    Article  Google Scholar 

  • Chen HD, Chen SY, Kraichnan RH (1989) Probability distribution of a stochastically advected scalar field. Phys Rev Lett 63(24):2657–2660

    Article  Google Scholar 

  • Cirpka OA, Valocchi AJ (2007) Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state. Adv Water Resour 30(6–7):1668–1679

    Article  Google Scholar 

  • Cirpka OA, Olsson Å, Ju Q, Rahman MA, Grathwohl P (2006) Determination of transverse dispersion coefficients from reactive plume lengths. Ground Water 44(2):212–221

    Article  Google Scholar 

  • Cirpka OA, Schwede RL, Luo J, Dentz M (2008) Concentration statistics for mixing-controlled reactive transport in random heterogeneous media. J Contam Hydrol 98(1–2):61–74

    Article  Google Scholar 

  • Clement TP, Sun Y, Hooker BS, Petersen JN (1998) Modeling multispecies reactive transport in ground water. Ground Water Monit Rem 18(2):79–92

    Article  Google Scholar 

  • Cvetkovic VD, Shapiro AM, Dagan G (1992) A solute flux approach in transport in heterogeneous formations: 2. Uncertainty analysis. Water Resour Res 28(5):1377–1388

    Article  Google Scholar 

  • Dagan G (1989) Flow and transport in porous formations. Springer, New York

    Google Scholar 

  • Dagan G (1994) Upscaling of dispersion coefficients in transport through heterogeneous porous formations. In: Computational methods in water resources X. Kluwer Academic, Norwell

    Google Scholar 

  • Dentz M, Kinzelbach H, Attinger S, Kinzelbach W (2000) Temporal behavior of a solute cloud in a heterogeneous porous medium 2. Spatially extended injection. Water Resour Res 36(12):3605–3614

    Article  Google Scholar 

  • De Simoni M, Carrera J, Sanchez-Vila X, Guadagnini A (2005) A procedure for the solution of multicomponent reactive transport problems. Water Resour Res 41:W11410. doi:10.1029/2005WR004056

    Article  Google Scholar 

  • De Simoni M, Sanchez-Vila X, Carrera J, Saaltink MW (2007) A mixing ratios-based formulation for multicomponent reactive transport. Water Resour Res 43:W07419. doi:10.1029/2006WR005256

    Article  Google Scholar 

  • Fernandez-Garcia D, Sanchez-Vila X, Guadagnini A (2008) Reaction rates and effective parameters in stratified aquifers. Adv Water Res 31(10):1364–1376

    Article  Google Scholar 

  • Fiori A (2001) The relative dispersion and mixing of passive solutes in transport in geologic media. Transp Porous Media 42(1–2):69–83

    Article  Google Scholar 

  • Fiori A, Dagan G (2000) Concentration fluctuations in aquifer transport: a rigorous first-order solution and applications. J Contam Hydrol 45(1–2):139–163

    Article  Google Scholar 

  • Fiorotto V, Caroni E (2002) Solute concentration statistics in heterogeneous aquifers for finite Peclet values. Transp Porous Media 48(3):331–351

    Article  Google Scholar 

  • Friedly JC, Rubin J (1992) Solute transport with multiple equilibrium-controlled or kinetically controlled chemical reactions. Water Resour Res 28(6):1935–1953

    Article  Google Scholar 

  • Gelhar LW, Axness CL (1983) Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour Res 19(1):161–180

    Article  Google Scholar 

  • Girimaji SS (1991) Assumed beta-pdf model for turbulent mixing—validation and extension to multiple scalar mixing. Combust Sci Technol 78(4–6):177–196

    Article  Google Scholar 

  • Guadagnini A, Sanchez-Vila X, Riva M, De Simoni M (2003) Mean travel time of conservative solutes in randomly heterogeneous unbounded domains under mean uniform flow. Water Resour Res 39(3):1050. doi:10.1029/2002WR001811

    Article  Google Scholar 

  • Guadagnini A, Sanchez-Vila X, Saaltink MW, Bussini M, Berkowitz B (2008) Application of a mixing-ratios based formulation to model mixing-driven dissolution laboratory experiments. Adv Water Resour. doi:10.1016/j.advwaters.2008.07.005

    Google Scholar 

  • Ham PAS, Schotting RJ, Prommer H, Davis GB (2004) Effects of hydrodynamic dispersion on plume lengths for instantaneous bimolecular reactions. Adv Water Resour 27(8):803–813

    Article  Google Scholar 

  • Hess KM, Wolf SH, Celia MA (1992) Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts, 3. Hydraulic conductivity variability and calculated macrodispersivities. Water Resour Res 28(8):2011–2017

    Article  Google Scholar 

  • Hu BX, Deng F-W, Cushman JH (1995) Nonlocal reactive transport with physical and chemical heterogeneity: linear nonequilibrium sorption with random Kd. Water Resour Res 31(9):2239–2252

    Article  Google Scholar 

  • Kapoor V, Gelhar LW (1994) Transport in three-dimensionally heterogeneous aquifers. 1. Dynamics of concentration fluctuations. Water Resour Res 30(6):1775–1788

    Article  Google Scholar 

  • Kapoor V, Kitanidis PK (1998) Concentration fluctuations and dilution in aquifers. Water Resour Res 34(5):1181–1193

    Article  Google Scholar 

  • Kitanidis PK (1994) The concept of the dilution index. Water Resour Res 30(7):2011–2026

    Article  Google Scholar 

  • Lawrence AE, Sanchez-Vila X, Rubin Y (2002) Conditional moments of the breakthrough curves of kinetically sorbing solute in heterogeneous porous media using multirate mass transfer models for sorption and desorption. Water Resour Res 38(11), Article Number 1248

  • Lichtner PC (1996) Continuous formulation of multicomponent-multiphase reactive transport. In: Lichtner PC, Steefel CI, Oeklers EH (eds) Reactive transport in porous media. Reviews in mineralogy, vol 34. Miner Soc Amer, Washington, pp 1–81

    Google Scholar 

  • Lichtner PC, Tartakovsky DM (2003) Stochastic analysis of effective rate constant for heterogeneous reactions. Stoch Env Res Risk Assess 17(6):419–429

    Article  Google Scholar 

  • Liedl R, Valocchi AJ, Dietrich P, Grathwohl P (2005) Finiteness of steady state plumes. Water Resour Res 31(12):W12501. doi:10.1029/2005WR004000

    Article  Google Scholar 

  • Luo J, Dentz M, Carrera J, Kitanidis PK (2008) Effective reaction parameters for mixing controlled reactions in heterogeneous media. Water Resour Res 44(2):W02416. doi:10.1029/2006WR005658

    Article  Google Scholar 

  • Molins S, Carrera J, Ayora C, Saaltink MW (2004) A formulation for decoupling components in reactive transport problems. Water Resour Res 40(10):W10301. doi:10.1029/2003WR002970

    Article  Google Scholar 

  • Neuman SP, Zhang Y-K (1990) A quasi-linear theory of non-Fickian subsurface dispersion, 1. Theoretical analysis with application to isotropic media. Water Resour Res 26(5):887–902

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey water-resources investigations report 99-4259

  • Phillips OM (1991) Flow and reactions in permeable rocks. Cambridge Univ Press, New York

    Google Scholar 

  • Pope SB (1981) Transport equation for the joint probability density function of velocity and scalars in turbulent flow. Phys Fluids 24(4):588–596

    Article  Google Scholar 

  • Quinodoz HAM, Valocchi AJ (1993) Stochastic analysis of the transport of kinetically sorbing solutes in aquifers with randomly heterogeneous hydraulic conductivity. Water Resour Res 29(9):3227–3240

    Article  Google Scholar 

  • Reichle R, Kinzelbach W, Kinzelbach H (1998) Effective parameters in heterogeneous and homogeneous transport models with kinetic sorption. Water Resour Res 34(4):583–594

    Article  Google Scholar 

  • Riva M, Sanchez-Vila X, Guadagnini A, De Simoni M, Willmann M (2006) Travel time and trajectory moments of conservative solutes in two-dimensional convergent flows. J Contam Hydrol 82:23–43

    Article  Google Scholar 

  • Riva M, Guadagnini A, Fernandez-Garcia D, Sanchez-Vila X, Ptak T (2008a) Relative importance of geostatistical and transport models in describing heavily tailed breakthrough curves at the Lauswiesen site. J Contam Hydrol 101(1–4):1–13

    Article  Google Scholar 

  • Riva M, Guadagnini A, Sanchez-Vila X (2008b) Effect of sorption heterogeneity on moments of solute residence time in convergent flows. Comput Geosci, submitted

  • Robinson BA, Viswanathan HS, Valocchi AJ (2000) Efficient numerical techniques for modeling multicomponent ground-water transport based upon simultaneous solution of strongly coupled subsets of chemical components. Adv Water Resour 23(4):307–324

    Article  Google Scholar 

  • Rubin J (1990) Solute transport with multisegment, equilibrium-controlled reactions: a feed forward simulation method. Water Resour Res 26(9):2029–2055

    Google Scholar 

  • Saaltink MW, Ayora C, Carrera J (1998) A mathematical formulation for reactive transport that eliminates mineral concentrations. Water Resour Res 34(7):1649–1656

    Article  Google Scholar 

  • Sanchez-Vila X, Guadagnini A (2005) Travel time and trajectory moments of conservative solutes in three dimensional heterogeneous porous media under mean uniform flow. Adv Water Res 28:429–439

    Article  Google Scholar 

  • Shvidler M, Karasaki K (2003) Probability density functions for solute transport in random field. Transp Porous Media 50:243–266

    Article  Google Scholar 

  • Singurindy O, Berkowitz B, Lowell RP (2004) Carbonate dissolution and precipitation in coastal environments: laboratory analysis and theoretical consideration. Water Resour Res 40:W04401. doi:10.1029/2003WR002651

    Article  Google Scholar 

  • Steefel CI, MacQuarrie KTB (1996) Approaches to modelling reactive transport. In: Reactive transport in porous media. Reviews in mineralogy, vol 34. Miner Soc Amer, Washington, pp 83–129

    Google Scholar 

  • Tebes-Stevens C, Valocchi AJ, VanBriesen JM, Rittmann BE (1998) Multicomponent transport with coupled geochemical and microbiological reactions: model description and example simulations. J Hydrol 209(1–4):8–26

    Article  Google Scholar 

  • Vanderborght J (2001) Concentration variance and spatial covariance in second-order stationary heterogeneous conductivity fields. Water Resour Res 37(7):1893–1912

    Article  Google Scholar 

  • Yeh GT, Tripathi VS (1991) A model for simulating transport of reactive multispecies components: model development and demonstration. Water Resour Res 27(12):3075–3094

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Sanchez-Vila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez-Vila, X., Guadagnini, A. & Fernàndez-Garcia, D. Conditional Probability Density Functions of Concentrations for Mixing-Controlled Reactive Transport in Heterogeneous Aquifers. Math Geosci 41, 323–351 (2009). https://doi.org/10.1007/s11004-008-9204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-008-9204-2

Keywords

Navigation