Skip to main content
Log in

Method of Solid-Phase Welding of Austenitic and Oxide-Dispersion-Strengthened Steels

  • Published:
Materials Science Aims and scope

By the method of solid-phase welding, we join a package of oxide-dispersion-strengthened (ODS) steel and 08Kh18N10Т stainless steel. We study the interface of the joint of specimens by using metallography, ultrasound, mechanical tensile tests, and the tests for the quality of joints of the layers. It is shown that the proposed method enables one to get high-quality interfaces of the joints without breaks and discontinuities and, in this case, all properties of the ODS steel, such as fine grains and the density of distribution of nanoparticles remain invariable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. C. Fazio, A. Alamo, A. Almazouzi, S. De Grandis, D. Gomez–Briceno, J. Henry, L. Malerba, and M. Rieth, “European cross-cutting research on structural materials for Generation IV and transmutation systems,” J. Nucl. Mater., 392, 316–323 (2009).

    Article  Google Scholar 

  2. K. L. Murty and I. Charit, “Structural materials for Gen-IV nuclear reactors: Challenges and opportunities,” J. Nucl. Mater., 383, 189–195 (2008).

    Article  Google Scholar 

  3. J. Li, W. Zheng, S. Penttil, et al., “Microstructure stability of candidate stainless steels for Gen-IV SCWR fuel cladding application,” J. Nucl. Mater., 454, 7–11 (2014).

    Article  Google Scholar 

  4. H. Oka, M. Watanabe, N. Hashimoto, S. Ohnuki, S. Yamashita, and S. Ohtsuka, “Morphology of oxide particles in ODS austenitic stainless steel,” J. Nucl. Mater., 442, S164–S168 (2013).

    Article  Google Scholar 

  5. Z. Zhou, Sh. Yang, W. Chen, L. Liao, and Y. Xu, “Processing and characterization of a hipped oxide dispersion strengthened austenitic steel,” J. Nucl. Mater., 428, 31–34 (2012).

    Article  Google Scholar 

  6. M. Wang, Z. Zhou, H. Sun, and Sh. Li, “Microstructural observation and tensile properties of ODS-304 austenitic steel,” Mater. Sci. Eng., Ser. A, 559, 287–292 (2013).

    Article  Google Scholar 

  7. S. Ukai and M. Fujiwara, “Perspective of ODS alloys application in nuclear environments,” J. Nucl. Mater., 307311, 749–757 (2002).

  8. H. Oka, M. Watanabe, H. Kinoshita, T. Shibayama, N. Hashimoto, S. Ohnuki, S. Yamashita, and S. Ohtsuka, ”In situ observation of damage structure in ODS austenitic steel during electron irradiation,” J. Nucl. Mater., 417, 279–282 (2011).

    Article  Google Scholar 

  9. А. N. Velikodnyi, V. N. Voyevodin, M. A. Tiкhonovsky, and G. Y. Storogilov, “Structure and properties of austenitic ODS steel 08Cr18Ni10Ti,” Problems of Atomic Science and Technology, Ser.: Physics of Radiation Effect and Radiation Materials Science, No. 4, 94–102 (2014).

  10. M. P. Phaniraj, D.-I. Kim, J.-H. Shim, and Y.-W. Cho, “Microstructure development in mechanically alloyed yttria dispersed austenitic steels,” Acta Mater., 57, 1856–1864 (2009).

    Article  Google Scholar 

  11. T.-K. Kim, Ch.-S. Bae, D.-I. Kim, J. Jang, S.-H. Kim, Ch.-B. Lee, and D. Hahn, “Microstructural observation and tensile isotropy of an austenitic ODS steel,” Nucl. Eng. Technol., 40, No. 4, 305–310 (2008).

    Article  Google Scholar 

  12. J. Moon, M.-H. Jang, J.-Yu. Kang, and T.-H. Lee, “The negative effect of Zr addition on the high temperature strength in alumina-forming austenitic stainless steels,” Mater. Characterization, 101, 136–143 (2015).

    Article  Google Scholar 

  13. I. М. Neklyudov, V. N. Voevodin, B. V. Borts, V. V. Levenets, А. F. Vanzha, А. P. Omel’nik, and А. А. Shchur, “Investigation of the distribution of elements in experimental ingots of DUO-steel by the method of X-ray spectroscopy induced by protons,” Fiz. Khim. Obrab. Mater., No. 4, 92–98 (2011).

  14. V. M. Arjavitin, B. V. Borts, A. F. Vanzha, I. M. Korotkova, and V. I. Sitin, “Investigation of the effect of alloying by nanostructured oxides ZrO2 on the properties of steel 18Cr10NiTi,” Problems of Atomic Science and Technology, Ser.: Physics of Radiation Effect and Radiation Materials Science, No. 5, 58–62 (2013).

  15. B. V. Borts, A. F. Vanzha, S. M. Korotkova, V. I. Sytin, and V. I. Tkachenko, “Research of the possibility of obtaining oxide dispersion strengthened alloys (ODS) by the method of vacuum-arc remelting,” Problems оf Atomic Science and Technology. Ser.: Physics of Radiation Effect and Radiation Materials Science, No. 4, 117–124 (2014).

  16. K. Verhiest, A. Almazouzi, N. De Wispelaere, R. Petrov, and S. Claessens, “Development of oxides dispersion strengthened steels for high temperature nuclear reactor applications, “ J. Nucl. Mater., 385, 308–311 (2009).

    Article  Google Scholar 

Download references

The authors are grateful to V. Ivanysenko and V. V. Bryk for their kind help in performing the electron-microscopic investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. М. Korotkova.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 53, No. 2, pp. 36–40, March–April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borts, B.V., Korotkova, I.М., Lopata, O.Т. et al. Method of Solid-Phase Welding of Austenitic and Oxide-Dispersion-Strengthened Steels. Mater Sci 53, 165–170 (2017). https://doi.org/10.1007/s11003-017-0058-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-017-0058-y

Keywords

Navigation