Skip to main content

Advertisement

Log in

Holocene ice dynamics and bottom-water formation associated with Cape Darnley polynya activity recorded in Burton Basin, East Antarctica

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

A multi-proxy study including sedimentological, mineralogical, biogeochemical and micropaleontological methods was conducted on sediment core PS69/849-2 retrieved from Burton Basin, MacRobertson Shelf, East Antarctica. The goal of this study was to depict the deglacial and Holocene environmental history of the MacRobertson Land–Prydz Bay region. A special focus was put on the timing of ice-sheet retreat and the variability of bottom-water formation due to sea ice formation through the Holocene. Results from site PS69/849-2 provide the first paleo-environmental record of Holocene variations in bottom-water production probably associated to the Cape Darnley polynya, which is the second largest polynya in the Antarctic. Methods included end-member modeling of laser-derived high-resolution grain size data to reconstruct the depositional regimes and bottom-water activity. The provenance of current-derived and ice-transported material was reconstructed using clay-mineral and heavy-mineral analysis. Conclusions on biogenic production were drawn by determination of biogenic opal and total organic carbon. It was found that the ice shelf front started to retreat from the site around 12.8 ka BP. This coincides with results from other records in Prydz Bay and suggests warming during the early Holocene optimum next to global sea level rise as the main trigger. Ice-rafted debris was then supplied to the site until 5.5 cal. ka BP, when Holocene global sea level rise stabilized and glacial isostatic rebound on MacRobertson Land commenced. Throughout the Holocene, three episodes of enhanced bottom-water activity probably due to elevated brine rejection in Cape Darnley polynya occured between 11.5 and 9 cal. ka BP, 5.6 and 4.5 cal. ka BP and since 1.5 cal. ka BP. These periods are related to shifts from warmer to cooler conditions at the end of Holocene warm periods, in particular the early Holocene optimum, the mid-Holocene warm period and at the beginning of the neoglacial. In contrast, between 7.7 and 6.7 cal. ka BP, brine rejection shut down, maybe owed to warm conditions and pronounced open-water intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson JB, Shipp SS, Lowe AL, Wellner JS, Mosola AB (2002) The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review. Quatern Sci Rev 21:49–70

    Article  Google Scholar 

  • Andrews JT, Domack E, Cunningham WL, Leventer A, Licht KJ, Jull AJT, DeMaster DJ, Jennings AE (1999) Problems and possible solutions concerning radiocarbon dating of surface marine sediments, Ross Sea, Antarctica. Quatern Res 52:206–216

    Article  Google Scholar 

  • Baines PG, Condie S (1998) Observations and modeling of Antarctic downslope flows: a review. In: Jacobs SS, Weiss RF (eds) Ocean, ice, and atmosphere: interactions at the Antarctic margin. Antarctic Research Series, Washington, D.C., pp 29–49

  • Berg S, Wagner B, Cremer H, Leng MJ, Melles M (2010) Late quaternary environmental and climate history of the Rauer Group, East Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 297:201–213

    Article  Google Scholar 

  • Berkman PA, Forman SL (1996) Pre-bomb radiocarbon and the reservoir correction for calcareous marine species in the southern ocean. Geophys Res Lett 23:363–366

    Article  Google Scholar 

  • Bindoff NL, Rosenberg MA, Warner MJ (2000) On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E. Deep Sea Res Part II Top Stud Oceanogr 47:2299–2326

    Article  Google Scholar 

  • Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76:803–832

    Article  Google Scholar 

  • Borchers A, Voigt I, Kuhn G, Diekmann B (2010) Mineralogy of glaciomarine sediments from the Prydz Bay–Kerguelen region: relation to modern depositional environments. Antarct Sci 23:164–179

    Article  Google Scholar 

  • Cooper AK, O’Brien PE, (2004) Leg 188 synthesis: transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling. In: Cooper AK, O’Brien PE, Richter C (eds) Proceedings of the ocean drilling program, scientific results, ocean drilling program, College Station, TX, pp 1–42

  • Cremer H, Gore D, Melles M, Roberts D (2003) Palaeoclimatic significance of late quaternary diatom assemblages from southern Windmill Islands, East Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 195:261–280

    Article  Google Scholar 

  • Crosta X, Denis D, Ther O (2008) Sea ice seasonality during the Holocene, Adelie Land, East Antarctica. Mar Micropaleontol 66:222–232

    Article  Google Scholar 

  • Denis D, Crosta X, Schmidt S, Carson DS, Ganeshram RS, Renssen H, Bout-Roumazeilles V, Zaragosi S, Martin B, Cremer M, Giraudeau J (2009a) Holocene glacier and deep water dynamics, Adelie Land region, East Antarctica. Quatern Sci Rev 28:1291–1303

    Article  Google Scholar 

  • Denis D, Crosta X, Schmidt S, Carson DS, Ganeshram RS, Renssen H, Crespin J, Ther O, Billy I, Giraudeau J (2009b) Holocene productivity changes off Adelie Land (East Antarctica). Paleoceanography 24:PA3207

    Article  Google Scholar 

  • Dietze E, Hartmann K, Diekmann B, IJmker J, Lehmkuhl F, Opitz S, Stauch G, Wünnemann B, Borchers A (2012) An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sed Geol 243–244:169–180

    Article  Google Scholar 

  • Dietze E, Maussion F, Ahlborn M, Diekmann B, Hartmann K, Henkel K, Kasper T, Lockot G, Opitz S, Haberzettl T (2014) Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments. Clim Past 10:91–106

    Article  Google Scholar 

  • Domack E, O’Brien P, Harris P, Taylor F, Quilty PG, De Santis L, Raker B (1998) Late quaternary sediment facies in Prydz Bay, East Antarctica and their relationship to glacial advance onto the continental shelf. Antarct Sci 10:236–246

    Article  Google Scholar 

  • Domack EW, Jacobson EA, Shipp S, Anderson JB (1999) Late Pleistocene–Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: part 2-sedimentologic and stratigraphic signature. Geol Soc Am Bull 111:1517–1536

    Article  Google Scholar 

  • Domack E, Amblas D, Gilbert R, Brachfeld S, Camerlenghi A, Rebesco M, Canals M, Urgeles R (2006) Subglacial morphology and glacial evolution of the Palmer deep outlet system, Antarctic Peninsula. Geomorphology 75:125–142

    Article  Google Scholar 

  • Drewry DJ (1986) Glacial geological processes. E. Arnold, London

    Google Scholar 

  • Ehrmann W, Melles M, Kuhn G, Grobe H (1992) Significance of clay mineral assemblages in the Antarctic Ocean. Mar Geol 107:249–273

    Article  Google Scholar 

  • Ehrmann W, Bloemendal J, Hambrey MJ, McKelvey B, Whitehead J (2003) Variations in the composition of the clay fraction of the Cenozoic Pagodroma Group, East Antarctica: implications for determining provenance. Sed Geol 161:131–152

    Article  Google Scholar 

  • Fairbanks RG (1989) A 17,000-year glacio-eustatic sea-level record—influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Article  Google Scholar 

  • Fink D, McKelvey B, Hambrey MJ, Fabel D, Brown R (2006) Pleistocene deglaciation chronology of the Amery Oasis and Radok Lake, northern Prince Charles Mountains, Antarctica. Earth Planet Sci Lett 243:229–243

    Article  Google Scholar 

  • Fleming K, Johnston P, Zwartz D, Yokoyama Y, Lambeck K, Chappell J (1998) Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth Planet Sci Lett 163:327–342

    Article  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos River bar [Texas]: a study in the significance of grain size parameters. J Sediment Res 27:3–26

    Article  Google Scholar 

  • Fricker HA, Warner RC, Allison I (2000) Mass balance of the Lambert Glacier—Amery Ice Shelf system, East Antarctica: a comparison of computed balance fluxes and measured fluxes. J Glaciol 46:561–570

    Article  Google Scholar 

  • Gersonde R, Zielinski U (2000) The reconstruction of late Quaternary Antarctic sea-ice distribution—the use of diatoms as a proxy for sea ice. Palaeogeogr Palaeoclimatol Palaeoecol 162:263–286

    Article  Google Scholar 

  • Gilbert R, Chong A, Dunbar RB, Domack EW (2003) Sediment trap records of glacimarine sedimentation at Muller Ice Shelf, Lallemand Fjord, Antarctic Peninsula. Arct Antarct Alp Res 35:24–33

    Article  Google Scholar 

  • Grobe H (1987) A simple method for the determination of ice-rafted debris in sediment cores. Polarforschung 57:123–126

    Google Scholar 

  • Grootes PM, Steig EJ, Stuiver M, Waddington ED, Morse DL, Nadeau M-J (2001) The Taylor Dome Antarctic 18O record and globally synchronous changes in climate. Quatern Res 56:289–298

    Article  Google Scholar 

  • Hall BL (2009) Holocene glacial history of Antarctica and the sub-Antarctic islands. Quatern Sci Rev 28:2213–2230

    Article  Google Scholar 

  • Harris PT (2000) Ripple cross-laminated sediments on the East Antarctic Shelf: evidence for episodic bottom water production during the Holocene? Mar Geol 170:317–330

    Article  Google Scholar 

  • Harris PT, O’Brien PE (1996) Geomorphology and sedimentology of the continental shelf adjacent to Mac. Robertson Land, East Antarctica: a scalped shelf. Geo Mar Lett 16:287–296

    Article  Google Scholar 

  • Harris PT, O’Brien PE (1998) Bottom currents, sedimentation and ice-sheet retreat facies successions on the MacRobertson Shelf, East Antarctica. Mar Geol 151:47–72

    Article  Google Scholar 

  • Harris PT, O’Brien PE, Quilty PG, Taylor F, Domack E, De Santis L, Raker B (1997) Post Cruise Record, Antarctic CRC Marine Geoscience: Vincennes Bay, Prydz Bay and MacRobertson Shelf: AGSO Cruise 186, ANARE Voyage 5, 1996/1997 (BRAD), AGSO Record 1997/51, pp 1–75

  • Harris PT, Taylor F, Pushina Z, Leitchenkov G, O’Brien PE, Smirnov V (1998) Lithofacies distribution in relation to the geomorphic provinces of Prydz Bay, East Antarctica. Antarct Sci 10:227–235

    Article  Google Scholar 

  • Hasle G, Syvertsen EE (1996) Marine diatoms. In: Tomas CR (ed) Identifying marine diatoms and dinoflagellates. Academic Press Limited, London, pp 5–385

    Chapter  Google Scholar 

  • Heil P, Allison I (1999) The pattern and variability of Antarctic sea-ice drift in the Indian Ocean and western Pacific sectors. J Geophys Res Oceans 104:15789–15802

    Article  Google Scholar 

  • Hemer MA, Harris PT (2003) Sediment core from beneath the Amery Ice Shelf, East Antarctica, suggests mid-Holocene ice-shelf retreat. Geology 31:127–130

    Article  Google Scholar 

  • Hemer MA, Post AL, O’Brien PE, Craven M, Truswell EM, Roberts D, Harris PT (2007) Sedimentological signatures of the sub-Amery Ice Shelf circulation. Antarct Sci 19(4):497–506

    Article  Google Scholar 

  • Hillenbrand C-D, Larter RD, Dowdeswell JA, Ehrmann W, Cofaigh CÓ, Benetti S, Graham AGC, Grobe H (2010a) The sedimentary legacy of a palaeo-ice stream on the shelf of the southern Bellingshausen Sea: clues to West Antarctic glacial history during the late quaternary. Quatern Sci Rev 29:2741–2763

    Article  Google Scholar 

  • Hillenbrand C-D, Smith JA, Kuhn G, Esper O, Gersonde R, Larter RD, Maher BA, Moreton SG, Shimmield TM, Korte M (2010b) Age assignment of a diatomaceous ooze deposited in the western Amundsen Sea Embayment after the last glacial maximum. J Quat Sci 25(3):280–295

    Article  Google Scholar 

  • Hjulstrøm F (1939) Transportation of debris by moving water. In: Trask PD (ed) Recent marine sediments; a symposium: Tulsa, Oklahoma, American Association of Petroleum Geologists, pp 5–31

  • Hodgkinson RP, Colman RS, Robb M, Williams R (1991) Current meter moorings in the region of Prydz Bay, Antarctica, 1987. Australian Antarctic Division

  • Hubberten HW (2008) The expedition of the research vessel Polarstern to the Antarctic in 2007 (ANT-XXIII/9). Reports on polar and marine research 583, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research

  • Hughes T (2002) Calving bays. Quatern Sci Rev 21:267–282

    Article  Google Scholar 

  • Ingolfsson O (2004) Quaternary glacial and climate history of Antarctica. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations-extent and chronology. Elsevier, pp 3–43

  • Ingolfsson O, Hjort C, Berkman PA, Bjorck S, Colhoun E, Goodwin ID, Hall B, Hirakawa K, Melles M, Moller P, Prentice ML (1998) Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land. Antarct Sci 10:326–344

    Article  Google Scholar 

  • Kuhn G (2013) Don’t forget the salty soup: calculations for bulk marine geochemistry and radionuclide geochronology. Mineral Mag 77:1519

    Google Scholar 

  • Leventer A, Domack E, Barkoukis A, McAndrews B, Murray J (2002) Laminations from the Palmer Deep: a diatom-based interpretation. Paleoceanography 17:1027

    Article  Google Scholar 

  • Leventer A, Domack EW, Dunbar R, Pike J, Stickley CE, Maddison E, Brachfeld S, McClennen C (2006) Marine sediment record from the East Antarctic margin reveals dynamics of ice sheet recession. GSA Today 16:4–10

    Article  Google Scholar 

  • Mackintosh A, White D, Fink D, Gore DB, Pickard J, Fanning PC (2007) Exposure ages from mountain dipsticks in Mac. Robertson Land, East Antarctica, indicate little change in ice-sheet thickness since the Last Glacial Maximum. Geology 35:551–554

    Article  Google Scholar 

  • Mackintosh A, Golledge N, Domack E, Dunbar R, Leventer A, White D, Pollard D, DeConto R, Fink D, Zwartz D, Gore D, Lavoie C (2011) Retreat of the East Antarctic ice sheet during the last glacial termination. Nat Geosci 4(195):202

    Google Scholar 

  • Mackintosh AN, Verleyen E, O’Brien PE, White DA, Jones RS, McKay R, Dunbar R, Gore DB, Fink D, Post AL, Miura H, Leventer A, Goodwin I, Hodgson DA, Lilly K, Crosta X, Golledge NR, Wagner B, Berg S, van Ommen T, Zwartz D, Roberts SJ, Vyverman W, Masse G (2014) Retreat history of the East Antarctic Ice Sheet since the Last Glacial Maximum. Quatern Sci Rev 100:10–30

    Article  Google Scholar 

  • Manson V, Imbrie J (1964) FORTRAN program for factor and vector analysis of geological data using an IBM 7090 or 7094/1401 computer system. Kansas Geol. Survey Spec. Distrib. Publ. 13

  • Marsland SJ, Church JA, Bindoff NL, Williams GD (2007) Antarctic coastal polynya response to climate change. J Geophys Res Oceans 112:C07009

    Google Scholar 

  • Masson V, Vimeux F, Jouzel J, Morgan V, Delmotte M, Ciais P, Hammer C, Johnsen S, Lipenkov VY, Mosley-Thompson E, Petit JR, Steig EJ, Stievenard M, Vaikmae R (2000) Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quatern Res 54:348–358

    Article  Google Scholar 

  • McCartney MS, Donohue KA (2007) A deep cyclonic gyre in the Australian-Antarctic Basin. Prog Oceanogr 75:675–750

    Article  Google Scholar 

  • McCave IN, Manighetti B, Robinson SG (1995) Sortable silt and fine sediment size composition slicing—parameters for paleocurrent speed and paleoceanography. Paleoceanography 10:593–610

    Article  Google Scholar 

  • Mikhalsky EV, Sheraton JW, Laiba AA, Tingey RJ, Thost DE, Kamenev EN, Fedorov LV (2001) Geology of the Prince Charles Mountains. AGSO Geoscience Australia Bulletin 247, Canberra

  • Milne GA, Long AJ, Bassett SE (2005) Modeling Holocene relative sea-level observations from the Caribbean and South America. Quatern Sci Rev 24:1183–1202

    Article  Google Scholar 

  • Müller PJ, Schneider R (1993) An automated leaching method for the determination of opal in sediments and particulate matter. Deep Sea Res Part I Oceanogr Res Pap 40:425–444

    Article  Google Scholar 

  • Nunes Vaz RA, Lennon GW (1996) Physical oceanography of the Prydz Bay region of Antarctic waters. Deep Sea Res Part I Oceanogr Res Pap 43:603–641

    Article  Google Scholar 

  • O’Brien PE, (1995) Antarctic CRC marine geoscience, Prydz Bay, Mac.Robertson Shelf and Kerguelen Plateau, 1995: post-cruise report: AGSO cruise 149, ANARE voyage 6, 1994/95 (BANGSS). Australian Geological Survey Organisation, Canberra

  • Ohshima K, Fukamachi Y, Williams GD, Nihashi S, Roquet F, Kitade Y, Tamura T, Hirano D, Herraiz-Borreguero L, Field I, Hindell M, Aoki S, Wakatsuchi M (2013) Antarctic bottom water production by intense sea-ice formation in the Cape Darnley polynya. Nat Geosci 6:235–240

    Article  Google Scholar 

  • Orsi AH, Whitworth T III, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I Oceanogr Res Pap 42:641–673

    Article  Google Scholar 

  • Paillard D, Labeyrie L, Yiou P (1996) Macintosh program performs time-series analysis. EOS Trans AGU 77:379

    Article  Google Scholar 

  • Petschick R, Kuhn G, Gingele F (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Mar Geol 130:203–229

    Article  Google Scholar 

  • Prins M, Stuut J-BW, Lamy F, Weltje GJ (1999) End-member modeling of grain-size distributions of deep sea detrital sediments and its palaeoclimatic significance: examples from the NW Indian, E Atlantic and SE Pacific Oceans. Geophys Res Abstr 1:564

    Google Scholar 

  • Quilty PG (2001) Reworked Paleocene and Eocene foraminifera, MacRobertson Shelf, East Antarctica: paleoenvironmental implications. J Foramin Res 31:369–384

    Article  Google Scholar 

  • Rathburn AE, Pichon JJ, Ayress MA, DeDeckker P (1997) Microfossil and stable-isotope evidence for changes in Late Holocene palaeoproductivity and palaeoceanographic conditions in the Prydz Bay region of Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 131:485–510

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeye CE (2009) Intcal09 And Marine09 radiocarbon age calibration curves, 0–50,000 years cal Bp. Radiocarbon 51:1111–1150

    Google Scholar 

  • Schmitt C, Kottmeier C, Wassermann S, Drinkwater M (2004) Atlas of Antarctic Sea Ice Drift, Karlsruhe

  • Schrader HJ, Gersonde R (1978) Diatoms and silicoflagellates. In: Zachariasse WJ, Riedel WR, Sanfilippo A, Schmidt RR, Brolsma MJ, Schrader HJ, Gersonde R, Drooger MM, Broekman JA (eds) Micropaleontological methods and techniques—an exercise on an eight meter section of the lower pliocene of Capo Rossello, Sicily. Utrecht Micropaleontol. Bull 17, pp 129–176

  • Sedwick PN, Harris PT, Robertson LG, McMurtry GM, Cremer MD, Robinson P (2001) Holocene sediment records from the continental shelf of Mac. Robertson Land, East Antarctica. Paleoceanography 16:212–225

    Article  Google Scholar 

  • Sjunneskog C, Taylor F (2002) Postglacial marine diatom record of the Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1098) 1. Total diatom abundance. Paleoceanography 17:8003

    Article  Google Scholar 

  • Slatt RM, Eyles N (1981) Petrology of glacial sand—implications for the origin and mechanical durability of lithic fragments. Sedimentology 28:171–183

    Article  Google Scholar 

  • Smith JA, Hillenbrand C-D, Pudsey CJ, Allen CS, Graham AGC (2010) The presence of polynyas in the Weddell Sea during the Last Glacial Period with implications for the reconstruction of sea-ice limits and ice sheet history. Earth Planet Sci Lett 296:287–298

    Article  Google Scholar 

  • Stagg HMJ (1985) The structure and origin of Prydz Bay and MacRobertson Shelf. East Antarct Tectonophys 114:315–340

    Article  Google Scholar 

  • Steig EJ, Morse DL, Waddington ED, Stuiver M, Grootes PM, Mayewski PA, Twickler MS, Whitlow SI (2000) Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross embayment, Antarctica. Geografiska Annaler. Ser A Phys Geogr 82:213–235

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended C-14 data-base and revised Calib 3.0 C-14 age calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Tamura T, Ohshima KI, Nihashi S (2008) Mapping of sea ice production for Antarctic coastal polynyas. Geophys Res Lett 35:L07606. doi:10.1029/2007GL032903

  • Taylor F, Leventer A (2003) Late quaternary palaeoenvironments in Prydz Bay, East Antarctica: interpretations from marine diatoms. Antarct Sci 15:512–521

    Article  Google Scholar 

  • Taylor F, McMinn A (2001) Evidence from diatoms for Holocene climate fluctuation along the East Antarctic margin. The Holocene 11:455–466

    Article  Google Scholar 

  • Taylor F, Sjunneskog C (2002) Postglacial marine diatom record of the Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1098) 2. Diatom assemblages. Paleoceanography 17:1026

    Article  Google Scholar 

  • Tingey RJ (1991) The regional geology of Archean and Proterozoic rocks in Antarctica. In: Tingey RJ (ed) The geology of Antarctica. Clarendon Press, Oxford, pp 1–73

    Google Scholar 

  • Verleyen E, Hodgson DA, Milne GA, Sabbe K, Vyverman W (2005) Relative sea-level history from the Lambert Glacier region, East Antarctica, and its relation to deglaciation and Holocene glacier readvance. Quatern Res 63:45–52

    Article  Google Scholar 

  • Verleyen E, Hodgson DA, Sabbe K, Cremer H, Emslie SD, Gibson J, Hall B, Imura S, Kudoh S, Marshall GJ, McMinn A, Melles M, Newman L, Roberts D, Roberts SJ, Singh SM, Sterken M, Tavernier I, Verkulich S, Van de Vyver E, Van Nieuwenhuyze W, Wagner B, Vyverman W (2011) Postglacial regional climate variability along the East Antarctic coastal margin—evidence from shallow marine and coastal terrestrial records. Earth Sci Rev 104:199–212

    Article  Google Scholar 

  • Wagner B, Cremer H, Hultzsch N, Gore DB, Melles M (2004) Late Pleistocene and Holocene history of Lake Terrasovoje, Amery Oasis, East Antarctica, and its climatic and environmental implications. J Paleolimnol 32:321–339

    Article  Google Scholar 

  • Wagner B, Hultzsch N, Melles M, Gore DB (2007) Indications of Holocene sea-level rise in Beaver Lake, East Antarctica. Antarct Sci 19:125–128

    Article  Google Scholar 

  • Weber ME, Clark PU, Ricken W, Mitrovica JX, Hostetler SW, Kuhn G (2011) Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum. Science 334:1265–1269

    Article  Google Scholar 

  • Weltje GJ (1997) End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Math Geol 29:503–549

    Article  Google Scholar 

  • Weltje GJ, Prins MA (2003) Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics. Sed Geol 162:39–62

    Article  Google Scholar 

  • Weltje GJ, Prins MA (2007) Genetically meaningful decomposition of grain-size distributions. Sed Geol 202:409–424

    Article  Google Scholar 

  • White DA, Bennike O, Berg S, Harley SL, Fink D, Kiernan K, McConnell A, Wagner B (2009) Geomorphology and glacial history of Rauer Group, East Antarctica. Quatern Res 72:80–90

    Article  Google Scholar 

  • Williams MJM, Warner RC, Budd WF (2002) Sensitivity of the Amery Ice Shelf, Antarctica, to changes in the climate of the Southern Ocean. J Clim 15:2740–2757

    Article  Google Scholar 

  • Wong APS (1994) Structure and dynamics of Prydz Bay, Antarctica, as inferred from a summer hydrographic data set. University Tasmania

  • Zielinski U, Gersonde R (1997) Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paleoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 129:213–250

    Article  Google Scholar 

Download references

Acknowledgments

This investigation was funded by Deutsche Forschungsgemeinschaft priority program SPP 1158 through grant DI 655/3-1/-2. We thank the officers and crew of RV Polarstern and chief scientist H. W. Hubberten for their competent help in collecting the samples. R. Froehlking, N. Lensch, U. Bock and U. Bastian are acknowledged for technical assistance. The manuscript benefited from comments and constructive suggestions of Sonja Berg and Bernd Wagner. Keiichiro Ohshima gave important insights into modern polynya activity and bottom-water flow paths on MacRobertson Shelf. Two anonymous reviewers provided helpful comments and suggestions for improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Diekmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borchers, A., Dietze, E., Kuhn, G. et al. Holocene ice dynamics and bottom-water formation associated with Cape Darnley polynya activity recorded in Burton Basin, East Antarctica. Mar Geophys Res 37, 49–70 (2016). https://doi.org/10.1007/s11001-015-9254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-015-9254-z

Keywords

Navigation