Skip to main content
Log in

On scale-dependent vibration of circular cylindrical nanoporous metal foam shells

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, free vibrations of cylindrical nanoshells made of nanoporous metal foam are investigated for the first time. Based on the modified couple stress theory and Love’s thin shell theory, the governing equations of the present system are derived by using Hamilton’s principle. Two types of nanoporosity distribution are considered in the construction of the nanoporous shells. Then, the Navier method and Galerkin method are utilized to solve natural frequencies of the nanoporous shells under different boundary conditions. Afterwards, a detailed parametric study is conducted. Results show that the nanoporosity type, the material length scale parameter, the porosity coefficient, the length-to-radius ratio, and the radius-to-thickness ratio play important role on the free vibrations of nanoporous shells. To check the validity of the present analysis, the results are compared with those in previous studies for the special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alibeigloo A, Shaban M (2013) Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity. Acta Mech 224:1415–1427

    Article  MathSciNet  MATH  Google Scholar 

  • Ansari R, Gholami R, Norouzzadeh A, Sahmani S (2015) Size-dependent vibration and instability of fluid-conveying functionally graded microshells based on the modified couple stress theory. Microfluid Nanofluidics 19:509–522

    Article  Google Scholar 

  • Ansari R, Pourashraf T, Gholami R, Rouhi H (2016) Analytical solution approach for nonlinear buckling and postbuckling analysis of cylindrical nanoshells based on surface elasticity theory. Appl Math Mech 37:903–918

    Article  MathSciNet  MATH  Google Scholar 

  • Asghari M, Rahaeifard M, Kahrobaiyan MH, Ahmadian MT (2011) The modified couple stress functionally graded Timoshenko beam formulation. Mater Des 32:1435–1443

    Article  MATH  Google Scholar 

  • Barati MR (2018) A general nonlocal stress–strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates. Eur J Mech A/Solids 67:215–230

    Article  MathSciNet  MATH  Google Scholar 

  • Barati MR, Zenkour AM (2017) Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions. Compos Struct 182:91–98

    Article  Google Scholar 

  • Biener J, Wittstock A, Zepeda-Ruiz LA et al (2009) Surface-chemistry-driven actuation in nanoporous gold. Nat Mater 8:47

    Article  Google Scholar 

  • Bringa EM, Monk JD, Caro A et al (2011) Are nanoporous materials radiation resistant? Nano Lett 12:3351–3355

    Article  Google Scholar 

  • Chen D, Yang J, Kitipornchai S (2015) Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos Struct 133:54–61

    Article  Google Scholar 

  • Chen D, Kitipornchai S, Yang J (2016) Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct 107:39–48

    Article  Google Scholar 

  • Cheng IC, Hodge AM (2013) Strength scale behavior of nanoporous Ag, Pd and Cu foams. Scr Mater 69:295–298

    Article  Google Scholar 

  • Detsi E, Punzhin S, Rao J et al (2012) Enhanced strain in functional nanoporous gold with a dual microscopic length scale structure. ACS Nano 6:3734–3744

    Article  Google Scholar 

  • Ebrahimi N, Beni YT (2016) Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory. Steel Compos Struct 22:1301–1336

    Article  Google Scholar 

  • Eringen AC (1980) Mechanics of continua. Robert E Krieger Publ Co, Huntington, p 606

    Google Scholar 

  • Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248

    Article  MathSciNet  MATH  Google Scholar 

  • Ghadiri M, SafarPour H (2017) Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment. J Therm Stress 40:55–71

    Article  Google Scholar 

  • Gibson LJ, Ashby MF (1982) The mechanics of three-dimensional cellular materials. Proc R Soc A Math Phys Eng Sci 382:43–59

    Article  Google Scholar 

  • Gurtin ME, Ian Murdoch A (1978) Surface stress in solids. Int J Solids Struct 14:431–440

    Article  MATH  Google Scholar 

  • Heydari H, Moosavifard SE, Shahraki M, Elyasi S (2017) Facile synthesis of nanoporous CuS nanospheres for high-performance supercapacitor electrodes. J Energy Chem 26:762–767

    Article  Google Scholar 

  • Jabbari M, Mojahedin A, Khorshidvand AR, Eslami MR (2014) Buckling analysis of a functionally graded thin circular plate made of saturated porous materials. J Eng Mech 140:287–295

    Article  Google Scholar 

  • Jin H-J, Wang X-L, Parida S et al (2009) Nanoporous Au–Pt alloys as large strain electrochemical actuators. Nano Lett 10:187–194

    Article  Google Scholar 

  • Ke LL, Wang Y (2011) Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos Struct 93:342–350

    Article  Google Scholar 

  • Ke LL, Wang YS, Reddy JN (2014a) Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Compos Struct 116:626–636

    Article  Google Scholar 

  • Ke LL, Wang YS, Yang J, Kitipornchai S (2014b) The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells. Smart Mater Struct 23:125036

    Article  Google Scholar 

  • Kheibari F, Beni YT (2017) Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model. Mater Des 114:572–583

    Article  Google Scholar 

  • Lam DCC, Yang F, Chong ACM et al (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  • Li J, Wang S, Xiao T et al (2017) Controllable preparation of nanoporous Ni3S2 films by sulfuration of nickel foam as promising asymmetric supercapacitor electrodes. Appl Surf Sci 420:919–926

    Article  Google Scholar 

  • Loy CT, Lam KY (1997) Vibration of cylindrical shells with ring support. Int J Mech Sci 39:455–471

    Article  MATH  Google Scholar 

  • Magnucka-Blandzi E (2010) Non-Linear analysis of dynamic stability of metal foam circular plate. J Theor Appl Mech 48:207–217

    Google Scholar 

  • Mehralian F, Beni YT (2018) Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory. J Braz Soc Mech Sci Eng 40:27

    Article  Google Scholar 

  • Mehralian F, Tadi Beni Y, Ansari R (2016) Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell. Compos Struct 152:45–61

    Article  Google Scholar 

  • Mohammadi K, Mahinzare M, Ghorbani K, Ghadiri M (2017) Cylindrical functionally graded shell model based on the first order shear deformation nonlocal strain gradient elasticity theory. Microsyst Technol 24:1133–1146

    Article  Google Scholar 

  • Nieman GW, Weertman JR, Siegel RW (1992) Mechanical behavior of nanocrystalline metals. Nanostructured Mater 1:185–190

    Article  Google Scholar 

  • Park SK, Gao XL (2006) Bernoulli–Euler beam model based on a modified couple stress theory. J Micromechanics Microengineering 16:2355–2359

    Article  Google Scholar 

  • Park SK, Gao XL (2008) Variational formulation of a modified couple stress theory and its application to a simple shear problem. Zeitschrift fur Angew Math und Phys 59:904–917

    Article  MathSciNet  MATH  Google Scholar 

  • Park H, Ahn C, Jo H et al (2014) Large-area metal foams with highly ordered sub-micrometer-scale pores for potential applications in energy areas. Mater Lett 129:174–177

    Article  Google Scholar 

  • Pia G, Delogu F (2013) On the elastic deformation behavior of nanoporous metal foams. Scr Mater 69:781–784

    Article  Google Scholar 

  • Razavi H, Babadi AF, Tadi Beni Y (2017) Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory. Compos Struct 160:1299–1309

    Article  Google Scholar 

  • Rouhi H, Ansari R, Darvizeh M (2016) Size-dependent free vibration analysis of nanoshells based on the surface stress elasticity. Appl Math Model 40:3128–3140

    Article  MathSciNet  MATH  Google Scholar 

  • Sahmani S, Aghdam MM (2017) A nonlocal strain gradient hyperbolic shear deformable shell model for radial postbuckling analysis of functionally graded multilayer GPLRC nanoshells. Compos Struct 178:97–109

    Article  Google Scholar 

  • Sahmani S, Aghdam MM, Bahrami M (2016) Size-dependent axial buckling and postbuckling characteristics of cylindrical nanoshells in different temperatures. Int J Mech Sci 107:170–179

    Article  Google Scholar 

  • Sahmani S, Aghdam MM, Bahrami M (2017) Surface free energy effects on the postbuckling behavior of cylindrical shear deformable nanoshells under combined axial and radial compressions. Meccanica 52:1329–1352

    Article  MathSciNet  MATH  Google Scholar 

  • Schiøtz J, Vegge T, Di Tolla FD, Jacobsen KW (1999) Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys Rev B Condens Matter Mater Phys 60:11971–11983

    Article  Google Scholar 

  • Shin H, Liu M (2005) Three-dimensional porous Copper–Tin alloy electrodes for rechargeable lithium batteries. Adv Funct Mater 15:582–586

    Article  Google Scholar 

  • Şimşek M, Reddy JN (2013) Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int J Eng Sci 64:37–53

    Article  MathSciNet  MATH  Google Scholar 

  • Soedel W (2004) Vibrations of shells and plates. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Soleimani I, Beni YT (2018) Vibration analysis of nanotubes based on two-node size dependent axisymmetric shell element. Arch Civ Mech Eng 18:1345–1358

    Article  Google Scholar 

  • Tadi Beni Y, Mehralian F, Razavi H (2015) Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos Struct 120:65–78

    Article  Google Scholar 

  • Tadi Beni Y, Mehralian F, Zeighampour H (2016) The modified couple stress functionally graded cylindrical thin shell formulation. Mech Adv Mater Struct 23:791–801

    Article  MATH  Google Scholar 

  • Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11:385–414

    Article  MathSciNet  MATH  Google Scholar 

  • Van Vliet KJ, Li J, Zhu T et al (2003) Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys Rev B 67:104105

    Article  Google Scholar 

  • Wang YQ (2018) Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state. Acta Astronaut 143:263–271

    Article  Google Scholar 

  • Wang Q, Varadan VK (2007) Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater Struct 16:178–190

    Article  Google Scholar 

  • Wang YQ, Zu JW (2017a) Analytical analysis for vibration of longitudinally moving plate submerged in infinite liquid domain. Appl Math Mech 38:625–646

    Article  MathSciNet  MATH  Google Scholar 

  • Wang YQ, Zu JW (2017b) Nonlinear steady-state responses of longitudinally traveling functionally graded material plates in contact with liquid. Compos Struct 164:130–144

    Article  Google Scholar 

  • Wang YQ, Zu JW (2017c) Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerosp Sci Technol 69:550–562

    Article  Google Scholar 

  • Wang YQ, Zu JW (2017d) Instability of viscoelastic plates with longitudinally variable speed and immersed in ideal liquid. Int J Appl Mech 9:1750005

    Article  Google Scholar 

  • Wang YQ, Zu JW (2018) Nonlinear dynamics of a translational FGM plate with strong mode interaction. Int J Struct Stab Dyn 18:1850031

    Article  MathSciNet  Google Scholar 

  • Wang R, Wang C, Cai W, Ding Y (2010) Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structures. Adv Mater 22:1845–1848

    Article  Google Scholar 

  • Wang YQ, Huang XB, Li J (2016) Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process. Int J Mech Sci 110:201–216

    Article  Google Scholar 

  • Wang YQ, Ye C, Zu JW (2018a) Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities. Appl Math Mech 39:1587–1604

    Article  MathSciNet  Google Scholar 

  • Wang YQ, Zhao HL, Ye C, Zu JW (2018b) A porous microbeam model for bending and vibration analysis based on the sinusoidal beam theory and modified strain gradient theory. Int J Appl Mech 10:1850059

    Article  Google Scholar 

  • Wittstock A, Zielasek V, Biener J et al (2010) Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327:319–322

    Article  Google Scholar 

  • Yamakov V, Wolf D, Phillpot SR et al (2004) Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat Mater 3:43–47

    Article  Google Scholar 

  • Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  • Zeighampour H, Beni YT (2014a) Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory. Phys E Low-Dimens Syst Nanostructures 61:28–39

    Article  Google Scholar 

  • Zeighampour H, Beni YT (2014b) Analysis of conical shells in the framework of coupled stresses theory. Int J Eng Sci 81:107–122

    Article  MathSciNet  MATH  Google Scholar 

  • Zeighampour H, Beni YT (2014c) Cylindrical thin-shell model based on modified strain gradient theory. Int J Eng Sci 78:27–47

    Article  MathSciNet  MATH  Google Scholar 

  • Zeighampour H, Beni YT (2015) A shear deformable cylindrical shell model based on couple stress theory. Arch Appl Mech 85:539–553

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant no. 11672071) and the Fundamental Research Funds for the Central Universities (Grant no. N170504023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The elements in the matrix of Eq. (53) are given by (porosity distribution 1):

$$\begin{aligned} q_{11} & = \frac{{hE_{1} \left( { - 2e_{0} + \pi } \right)\left\{ { - 8k_{m}^{2} R^{4} + n^{4} l^{2} \left( { - 1 + \nu } \right) + n^{2} \left[ {4R^{2} + l^{2} \left( {4 + k_{m}^{2} R^{2} } \right)} \right]\left( { - 1 + \nu } \right)} \right\}}}{{8\pi R^{4} \left( { - 1 + \nu^{2} } \right)}} \\ & \quad \frac{{ - h\left( { - 2e_{m} + \pi } \right)\rho_{1} \omega^{2} }}{\pi }; \\ q_{12} & = \frac{{E_{1} hk_{m} n\left( { - 2e_{0} + \pi } \right)\left\{ {n^{2} l^{2} \left( { - 1 + \nu } \right) + R^{2} \left[ {k_{m}^{2} l^{2} \left( { - 1 + \nu } \right) + 4\left( {1 + \nu } \right)} \right]} \right\}}}{{8\pi R^{3} \left( { - 1 + \nu^{2} } \right)}}; \\ q_{13} & = \frac{{E_{1} hk_{m} \left( { - 2e_{0} + \pi } \right)\left[ {3n^{2} l^{2} \left( { - 1 + \nu } \right) + 4R^{2} \nu } \right]}}{{4\pi R^{3} \left( { - 1 + \nu^{2} } \right)}}; \\ q_{21} & = q_{12} ; \\ q_{22} & = \frac{1}{{8\pi R^{4} \left( { - 1 + \nu^{2} } \right)}}h\left\{ { - 2e_{0} E_{1} \left[ {n^{2} \left( { - 8R^{2} + l^{2} \left( {4 + k_{m}^{2} R^{2} } \right)\left( { - 1 + \nu } \right)} \right)} \right.} \right. \\ & \left. {\quad + k_{m}^{2} R^{2} \left( {4R^{2} + l^{2} \left( {12 + k_{m}^{2} R^{2} } \right)} \right)\left( { - 1 + \nu } \right)} \right] \\ & \quad + E_{1} \pi \left[ {n^{2} \left( { - 8R^{2} + l^{2} \left( {4 + k_{m}^{2} R^{2} } \right)\left( { - 1 + \nu } \right)} \right) + k_{m}^{2} R^{2} \left( {4R^{2} + l^{2} \left( {12 + k_{m}^{2} R^{2} } \right)} \right)\left( { - 1 + \nu } \right)} \right] \\ & \quad \left. { - 8\left( { - 2e_{m} + \pi } \right)R^{4} \left( { - 1 + \nu^{2} } \right)\rho_{1} \omega^{2} } \right\}; \\ q_{23} & = \frac{{E_{1} hn\left( { - 2e_{0} + \pi } \right)\left[ { - 4R^{2} + l^{2} \left( {2n^{2} + 5k_{m}^{2} R^{2} } \right)\left( { - 1 + \nu } \right)} \right]}}{{4\pi R^{4} \left( { - 1 + \nu^{2} } \right)}}; \\ q_{31} & = q_{13} ; \\ q_{32} & = q_{23} ; \\ q_{33} & = - \frac{1}{{24\pi^{3} R^{4} \left( { - 1 + \nu^{2} } \right)}}h\left\{ {E_{1} \pi^{3} \left[ {24R^{2} + h^{2} \left( {2n^{4} + 2k_{m}^{4} R^{4} + k_{m}^{2} n^{2} \left( {4R^{2} - l^{2} \left( { - 1 + \nu } \right)} \right)} \right)} \right.} \right. \\ & \left. {\quad - 12l^{2} \left( {k_{m}^{2} R^{2} + \left( {n^{2} + k_{m}^{2} R^{2} } \right)^{2} } \right)\left( { - 1 + \nu } \right)} \right] - 6e_{0} E_{1} \left[ {4\pi^{2} \left[ {2R^{2} - l^{2} \left( {k_{m}^{2} R^{2} + \left( {n^{2} + k_{m}^{2} R^{2} } \right)^{2} } \right)} \right.} \right. \\ & \quad \left. {\left. { \times \left( { - 1 + \nu } \right)} \right] + h^{2} \left( { - 8 + \pi^{2} } \right)\left( {2n^{4} + 2k_{m}^{4} R^{4} + k_{m}^{2} n^{2} \left( {l^{2} + 4R^{2} - l^{2} \nu } \right)} \right)} \right] \\ & \quad + 2R^{2} \left[ {\pi^{3} \left( {12R^{2} + h^{2} \left( {n^{2} + k_{m}^{2} R^{2} } \right)} \right) - 6e_{m} \left( {4\pi^{2} R^{2} + h^{2} \left( { - 8 + \pi^{2} } \right)\left( {n^{2} + k_{m}^{2} R^{2} } \right)} \right)} \right] \\ & \left. {\quad \times {\kern 1pt} \left( { - 1 + \nu^{2} } \right)\rho_{1} \omega^{2} } \right\}.{\kern 1pt} \\ \end{aligned}$$
(59)

where \(k_{m} = \frac{m\pi }{L}\).

The elements in the matrix of Eq. (53) are given by (porosity distribution 2):

$$\begin{aligned} q_{11} & = \frac{{hE_{1} \left( { - 2e_{0} + \pi } \right)\left\{ { - 8k_{m}^{2} R^{4} + n^{4} l^{2} \left( { - 1 + \nu } \right) + n^{2} \left[ {4R^{2} + l^{2} \left( {4 + k_{m}^{2} R^{2} } \right)} \right]\left( { - 1 + \nu } \right)} \right\}}}{{8\pi R^{4} \left( { - 1 + \nu^{2} } \right)}} \\ & \quad \frac{{ - h\left( { - 2e_{m} + \pi } \right)\rho_{1} \omega^{2} }}{\pi }; \\ q_{12} & = \frac{{E_{1} hk_{m} n\left( { - 2e_{0} + \pi } \right)\left\{ {n^{2} l^{2} \left( { - 1 + \nu } \right) + R^{2} \left[ {k_{m}^{2} l^{2} \left( { - 1 + \nu } \right) + 4\left( {1 + \nu } \right)} \right]} \right\}}}{{8\pi R^{3} \left( { - 1 + \nu^{2} } \right)}}; \\ q_{13} & = \frac{1}{{4\pi^{2} R^{4} \left( { - 1 + \nu^{2} } \right)}}hk_{m} \left\{ {E_{1} \pi^{2} R\left( {3n^{2} l^{2} \left( { - 1 + \nu } \right) + 4R^{2} \nu } \right) + 2e_{0} E_{1} \left[ {h\left( { - 4 + \pi } \right)} \right.} \right. \\ & \left. {\quad k_{m}^{2} R^{4} + n^{2} \left( { - 2R^{2} + l^{2} \left( { - 1 + \nu } \right)} \right) + \pi R\left( { - 3n^{2} l^{2} \left( { - 1 + \nu } \right) - 4R^{2} \nu } \right)} \right] \\ & \quad \left. { - 4e_{m} h\left( { - 4 + \pi } \right)R^{4} \left( { - 1 + \nu^{2} } \right)\rho_{1} \omega^{2} } \right\}; \\ q_{21} & = q_{12} ; \\ q_{22} & = \frac{1}{{8\pi R^{4} \left( { - 1 + \nu^{2} } \right)}}h\left\{ { - 2e_{0} E_{1} \left[ {n^{2} \left( { - 8R^{2} + l^{2} \left( {4 + k_{m}^{2} R^{2} } \right)\left( { - 1 + \nu } \right)} \right)} \right.} \right. \\ & \left. {\quad + k_{m}^{2} R^{2} \left( {4R^{2} + l^{2} \left( {12 + k_{m}^{2} R^{2} } \right)} \right)\left( { - 1 + \nu } \right)} \right] \\ & \quad + E_{1} \pi \left[ {n^{2} \left( { - 8R^{2} + l^{2} \left( {4 + k_{m}^{2} R^{2} } \right)\left( { - 1 + \nu } \right)} \right) + k_{m}^{2} R^{2} \left( {4R^{2} + l^{2} \left( {12 + k_{m}^{2} R^{2} } \right)} \right)\left( { - 1 + \nu } \right)} \right] \\ & \quad \left. { - 8\left( { - 2e_{m} + \pi } \right)R^{4} \left( { - 1 + \nu^{2} } \right)\rho_{1} \omega^{2} } \right\}; \\ q_{23} & = \frac{1}{{4\pi^{2} R^{4} \left( { - 1 + \nu^{2} } \right)}}hn\left\{ {E_{1} \pi^{2} \left( { - 4R^{2} + l^{2} \left( {2n^{2} + 5k_{m}^{2} R^{2} } \right)\left( { - 1 + \nu } \right)} \right)} \right. \\ & \quad + 2e_{0} E_{1} \left[ {R\left( {\pi R\left( {4 - 5k_{m}^{2} l^{2} \left( { - 1 + \nu } \right)} \right) + hk_{m}^{2} \left( { - 4 + \pi } \right)\left( {l^{2} + 2R^{2} - l^{2} \nu } \right)} \right)} \right. \\ & \left. {\left. {\quad + 2n^{2} \left( {h\left( { - 4 + \pi } \right)R + l^{2} \left( {\pi - \pi \nu } \right)} \right)} \right] + 4e_{m} h\left( { - 4 + \pi } \right)R^{3} \left( { - 1 + \nu^{2} } \right)\rho_{1} \omega^{2} } \right\}; \\ q_{31} & = q_{13} ; \\ q_{32} & = q_{23} ; \\ q_{33} & = - \frac{1}{{24\pi^{3} R^{4} \left( { - 1 + \nu^{2} } \right)}}h\left\{ {E_{1} \pi^{3} \left[ {24R^{2} + h^{2} \left( {2n^{4} + 2k_{m}^{4} R^{4} + k_{m}^{2} n^{2} \left( {4R^{2} - l^{2} \left( { - 1 + \nu } \right)} \right)} \right)} \right.} \right. \\ & \left. {\quad - 12l^{2} \left( {k_{m}^{2} R^{2} + \left( {n^{2} + k_{m}^{2} R^{2} } \right)^{2} } \right)\left( { - 1 + \nu } \right)} \right] - 6e_{0} E_{1} \left[ {4\pi^{2} \left[ {2R^{2} - l^{2} \left( {k_{m}^{2} R^{2} + \left( {n^{2} + k_{m}^{2} R^{2} } \right)^{2} } \right)} \right.} \right. \\ & \quad \left. { \times \left( { - 1 + \nu } \right)} \right] + 8h\left( { - 4 + \pi } \right)\pi R\left( {n^{2} + k_{m}^{2} R^{2} \nu } \right) + h^{2} \left( { - 32 + \pi \left( {8 + \pi } \right)} \right) \\ & \quad \times \left. {\left( {2n^{4} + 2k_{m}^{4} R^{4} + k_{m}^{2} n^{2} \left( {l^{2} + 4R^{2} - l^{2} \nu } \right)} \right)} \right] + 2R^{2} \left[ {\pi^{3} \left( {12R^{2} + h^{2} \left( {n^{2} + k_{m}^{2} R^{2} } \right)} \right)} \right. \\ & \quad \left. {\left. { - 6e_{m} \left( {4\pi^{2} R^{2} + h^{2} \left( { - 32 + \pi \left( {8 + \pi } \right)} \right)\left( {n^{2} + k_{m}^{2} R^{2} } \right)} \right)} \right]\left( { - 1 + \nu^{2} } \right)\rho_{1} \omega^{2} } \right\}.{\kern 1pt} {\kern 1pt} \\ \end{aligned}$$
(60)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.Q., Liu, Y.F. & Zu, J.W. On scale-dependent vibration of circular cylindrical nanoporous metal foam shells. Microsyst Technol 25, 2661–2674 (2019). https://doi.org/10.1007/s00542-018-4262-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4262-y

Navigation