Skip to main content
Log in

The incremental response of soils. An investigation using a discrete-element model

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The incremental stress-strain relation of dense packings of polygons is investigated by using molecular-dynamics simulations. The comparison of the simulation results to the continuous theories is performed using explicit expressions for the averaged stress and strain over a representative volume element. The discussion of the incremental response raises two important questions of soil deformation: Is the incrementally nonlinear theory appropriate to describe the soil mechanical response? Does a purely elastic regime exist in the deformation of granular materials? In both cases the answer will be “no”. The question of stability is also discussed in terms of the Hill condition of stability for non-associated materials. It is contended that the incremental response of soils should be revisited from micromechanical considerations. A micromechanical approach assisted by discrete element simulations is briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Landau E.M. Lifshitz (1986) Theory of Elasticity, Volume 7 of Course of Theoretical Physics Pergamon Press Moscow 362

    Google Scholar 

  2. P.A. Vermeer (1998) Non-associated plasticity for soils, concrete and rock H.J. Herrmann J.-P. Hovi S. Luding (Eds) Physics of Dry Granular Media - NATO ASI Series E350 Kluwer Academic Publishers Dordrecht 163–193

    Google Scholar 

  3. K.H. Roscoe J.B. Burland (1968) On the generalized stress-strain behavior of ‘wet’ clay J. Heyman F.A. Leckie (Eds) Engineering Plasticity Cambridge University Press Cambridge 535–609

    Google Scholar 

  4. G. Gudehus F. Darve I. Vardoulakis (1984) Constitutive Relations of Soils Balkema Rotterdam 5–12

    Google Scholar 

  5. P.A. Cundall O.D.L. Strack (1979) ArticleTitleA discrete numerical model for granular assemblages Géotechnique 29 47–65

    Google Scholar 

  6. K. Bagi (1996) ArticleTitleStress and strain in granular assemblies Mech. Mater 22 165–177

    Google Scholar 

  7. P.A. Cundall A. Drescher O.D.L. Strack (1982) Numerical experiments on granular assemblies; measurements and observations P. Vermeer H. Luger (Eds) IUTAM Conference on Deformation and Failure of Granular Materials Balkema-Rotterdam Delf 355–370

    Google Scholar 

  8. C. Goldenberg I. Goldhirsch (2002) ArticleTitleForce chains, microelasticity, and macroelasticity Phys. Rev. Lett 89 084302

    Google Scholar 

  9. K. Bagi (1999) ArticleTitleMicrostructural stress tensor of granular assemblies with volume forces J. Appl. Mech 66 934–936

    Google Scholar 

  10. Lätzel M. (2002). From Discontinuous Models Towards A Continuum Description Of Granular Media. PhD thesis. Universität Stuttgart, 172 pp

  11. J.P. Bardet (1994) ArticleTitleNumerical simulations of the incremental responses of idealized granular materials Int. J. Plasticity 10 879–908

    Google Scholar 

  12. Y. Kishino (2003) ArticleTitleOn the incremental nonlinearity observed in a numerical model for granular media Ital. Geotech. J 3 3–12

    Google Scholar 

  13. F. Calvetti G. Viggiani C. Tamagnini (2003) Micromechanical inspection of constitutive modeling Pande. Pietruszczak. (Eds) Constitutive Modeling and Analysis of Boundary Value Problems in Geotechnical Engineering Hevelius Edizioni Benevento 187–216

    Google Scholar 

  14. M. Oda K. Iwashita (2000) ArticleTitleStudy on couple stress and shear band development in granular media based on numerical simulation analyses Int. J. Engng. Sci 38 1713–1740

    Google Scholar 

  15. I. Vardoulakis J. Sulem (1995) Bifurcation Analysis in Geomechanics Blakie Academic & Professional London 462

    Google Scholar 

  16. R.J. Bathurst L. Rothenburg (1988) ArticleTitleMicromechanical aspects of isotropic granular assemblies with linear contact interactions J. Appl. Mech 55 17–23

    Google Scholar 

  17. F. Darve F. Laouafa (2000) ArticleTitleInstabilities in granular materials and application to landslides Mech. of Cohes. Frict. Mater 5 627–652

    Google Scholar 

  18. G. Gudehus (1979) ArticleTitleA comparison of some constitutive laws for soils under radially symmetric loading and unloading Can. Geotech. J 20 502–516

    Google Scholar 

  19. D.C. Drucker W. Prager (1952) ArticleTitleSoil mechanics and plastic analysis of limit design Q. Appl. Math 10 157–165

    Google Scholar 

  20. R. Nova D. Wood (1979) ArticleTitleA constitutive model for sand in triaxial compression Int. J. Num. Anal. Meth. Geomech 3 277–299

    Google Scholar 

  21. K.H. Roscoe (1970) ArticleTitleThe influence of the strains in soil mechanics Geotechnique 20 129–170

    Google Scholar 

  22. H.B. Poorooshasb I. Holubec A.N. Sherbourne (1967) ArticleTitleYielding and flow of sand in triaxial compression Can. Geotech. J 4 277–398

    Google Scholar 

  23. D.M. Wood (1982) Soil Mechanics-transient and cyclic loads John Wiley and Sons Ltd. Chichester 420

    Google Scholar 

  24. F. Tatsouka K. Ishihara (1974) ArticleTitleYielding of sand in triaxial compression Soils Found 14 63–76

    Google Scholar 

  25. Y.F. Dafalias E.P. Popov (1975) ArticleTitleA model of non-linearly hardening material for complex loading Acta Mech 21 173–192

    Google Scholar 

  26. D. Kolymbas (1991) ArticleTitleAn outline of hypoplasticity Arch. Appl. Mech 61 143–151

    Google Scholar 

  27. F. Darve E. Flavigny M. Meghachou (1995) ArticleTitleYield surfaces and principle of superposition: revisit through incrementally non-linear constitutive relations Int. J. Plast 11 927–942

    Google Scholar 

  28. R. Chambon J. Desrues W. Hammad R. Charlier E CLo (1994) ArticleTitlea new rate type constitutive model for geomaterials. Theoretical basis nd implementation Int. J. Anal. Meth. Geomech 18 253–278

    Google Scholar 

  29. W. Wu E. Bauer D. Kolymbas (1996) ArticleTitleHypoplastic constitutive model with critical state for granular materials Mech. Mater 23 45–69

    Google Scholar 

  30. I. Herle G. Gudehus (1999) ArticleTitleDetermination of parameters of a hypoplastic constitutive model from properties of grain assemblies Mech. Cohes.-Frictl. Matls 4 461–486

    Google Scholar 

  31. D. Kolymbas (1993) Modern Approaches to Plasticity Elsevier Horton 489

    Google Scholar 

  32. F. Kun H.J. Herrmann (1999) ArticleTitleTransition from damage to fragmentation in collision of solids Phys. Rev. E 59 2623–2632

    Google Scholar 

  33. C. Moukarzel H.J. Herrmann (1992) ArticleTitleA vectorizable random lattice J. Statist. Phys 68 911–923

    Google Scholar 

  34. A. Okabe B. Boots K. Sugihara (1992) Spatial Tessellations Concepts and Applications of Voronoi Diagrams. Wiley Series in probability and Mathematical Statistics. John Wiley & Sons Chichester 532

    Google Scholar 

  35. H.J. Tillemans H.J. Herrmann (1995) ArticleTitleSimulating deformations of granular solids under shear Physica A 217 261–288

    Google Scholar 

  36. M.P. Allen D.J. Tildesley (1987) Computer Simulation of Liquids Oxford University Press Oxford 385

    Google Scholar 

  37. E. Buckingham (1914) ArticleTitleOn physically similar systems: Illustrations of the use of dimensional equations Phys. Rev 4 345–376

    Google Scholar 

  38. T. Marcher P.A. Vermeer (2001) Macromodeling of softening in non-cohesive soils P.A. Vermeer S. Diebels W. Ehlers H.J. Herrmann S. Luding E. Ramm (Eds) Continuous and Discontinuous Modeling of Cohesive Frictional Materials Springer Berlin 89–110

    Google Scholar 

  39. Desrues J. (1984). Localisation de la Deformation Plastique dans les Materieux Granulaires. PhD thesis, University of Grenoble

  40. F. Alonso-Marroquin H.J. Herrmann (2002) ArticleTitleCalculation of the incremental stress-strain relation of a polygonal packing Phys. Rev. E 66 021301

    Google Scholar 

  41. F. Alonso-Marroquin and H.J. Herrmann, Ratcheting of granular materials. Phys. Rev. Lett. 92 (2004) 054301.

    Google Scholar 

  42. Y.F. Dafalias (1986) ArticleTitleBounding surface plasticity. I: Mathematical foundation and hypoplasticity J. Engng. Mech 112 IssueID9 966–987

    Google Scholar 

  43. P.A. Vermeer (1984) A five-constant model unifying well-established concepts G. Gudehus F. Darve I. Vardoulakis (Eds) Constitutive Relations of Soils Balkema Rotterdam 175–197

    Google Scholar 

  44. R. Hill (1958) ArticleTitleA general theory of uniqueness and stability in elastic-plastic solids J. Geotech. Eng 6 239–249

    Google Scholar 

  45. J.A. Astrom H.J. Herrmann J. Timonen (2000) ArticleTitleGranular packings and fault zones Phys. Rev. Lett 84 4638–4641

    Google Scholar 

  46. F. Alonso-Marroquin H.J. Herrmann I. Vardoulakis (2002) Micromechanical investigation of soil plasticity: An investigation using a discrete model of polygonal particles P.A. Vermeer W. Ehlers H.J. Herrmann E. Ramm (Eds) Modeling of Cohesive-Frictional Materials Balkema Rotterdam 45–67

    Google Scholar 

  47. H.-B. Mühlhaus I. Vardoulakis (1987) ArticleTitleThe thickness of shear bands in granular materials Géotechnique 37 271–283

    Google Scholar 

  48. Alonso-Marroquin F., McNamara S., Herrmann H.J. (2003). Micromechanische Untersuchung des granulares Ratchetings. Antrag an die Deutsche Forschungsgemeinschaft, Universität Stuttgart

  49. G.R. McDowell M.D. Bolton D. Robertson (1996) ArticleTitleThe fractal crushing of granular materials J. Mech. Phys. Solids 44 2079–2102

    Google Scholar 

  50. M.D. Bolton (2002) The role of micro-mechanics in soil mechanics M. Hyodo Y. Nakata (Eds) International Workshop on Soil Crushability Yamaguchi University Japan 166–178

    Google Scholar 

  51. C. Thornton D.J. Barnes (1986) ArticleTitleComputer simulated deformation of compact granular assemblies Acta Mech 64 45–61

    Google Scholar 

  52. S. Luding (2004) ArticleTitleMicro-macro transition for anisotropic, frictional granular packings Int. J. Sol. Struct 41 5821–5836

    Google Scholar 

  53. M. Madadi O. Tsoungui M. Lätzel S. Luding (2004) ArticleTitleOn the fabric tensor of polydisperse granular media in 2D Int. J. Sol. Struct 41 2563–2580

    Google Scholar 

  54. F. Radjai M. Jean J.J. Moreau S. Roux (1996) ArticleTitleForce distribution in dense two-dimensional granular systems Phys. Rev. Lett 77 274–277

    Google Scholar 

  55. K. Bagi (2003) ArticleTitleStatistical analysis of contact force components in random granular assemblies Granular Matter 5 45–54

    Google Scholar 

  56. H.M. Jaeger S.R. Nagel R.P. Behringer (1996) ArticleTitleGranular solids, liquids and gases Rev. Mod. Phys 68 1259–1273

    Google Scholar 

  57. D. Coppersmith (1996) ArticleTitleModel for force fluctuations in bead packs Phys. Rev. E 53 4673–4685

    Google Scholar 

  58. S. Roux F. Radjai (2001) On the state variables of the granular materials H. Aref J.W. Philips (Eds) Mechanics of a New Millenium Kluwer Dordrecht 181–196

    Google Scholar 

  59. S. Luding (2004) Micro-macro models for anisotropic granular media P.A. Vermeer W. Ehlers H.J. Herrmann E. Ramm (Eds) Modeling of Cohesive-Frictional Materials Balkema Rotterdam 195–205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Alonso-Marroquín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso-Marroquín, F., Herrmann, H.J. The incremental response of soils. An investigation using a discrete-element model. J Eng Math 52, 11–34 (2005). https://doi.org/10.1007/s10665-004-6675-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-004-6675-0

Keywords

Navigation