Skip to main content
Log in

A shear lag model of Piezoelectric composite reinforced with carbon nanotubes-coated Piezoelectric fibers

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A novel hybrid piezoelectric composite in which the microscopic piezoelectric fiber reinforcements are coated with radially aligned carbon nanotubes (CNTs) is analyzed in this study. A shear-lag model is developed to analyze the load transferred to such coated fibers from the aligned-CNT reinforced matrix in a hybrid composite application in the absence and the presence of the electric field along the length of the fiber. It is found that if the aligned CNTs are radially grown on the surface of the piezoelectric fiber then the axial load transferred to the fiber is reduced in the absence of the electric field while the axial stress in the fiber increases in the presence of the electric filed only. The radial stress in the active piezoelectric fiber significantly increases due to the radial growth of aligned CNTs on the surface of the fibers. This indicates a probable critical window for engineering the surface of the piezoelectric fiber for improving the effective piezoelectric properties. Effects of the variation of the aspect ratio of the piezoelectric fiber and the CNT volume fraction on the load transferred to such CNT-coated piezoelectric fibers are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, M.C. A shear lag model of Piezoelectric composite reinforced with carbon nanotubes-coated Piezoelectric fibers. Int J Mech Mater Des 6, 147–155 (2010). https://doi.org/10.1007/s10999-010-9118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-010-9118-2

Keywords

Navigation