Skip to main content
Log in

On distinct distances among points in general position and other related problems

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

A set of points in the plane is said to be in general position if no three of them are collinear and no four of them are cocircular. If a point set determines only distinct vectors, it is called parallelogram free. We show that there exist n-element point sets in the plane in general position, and parallelogram free, that determine only O(n 2/√log n) distinct distances. This answers a question of Erdős, Hickerson and Pach. We then revisit an old problem of Erdős: given any n points in the plane (or in d dimensions), how many of them can one select so that the distances which are determined are all distinct? — and provide (make explicit) some new bounds in one and two dimensions. Other related distance problems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. L. Abbott, Sidon sets, Canad. Math. Bull., 33 (1990), 335–341.

    MATH  MathSciNet  Google Scholar 

  2. D. Avis, P. Erdős and J. Pach, Distinct distances determined by subsets of a point set in space, Comput. Geom., 1 (1991), 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Alon and J. Spencer, The Probabilistic Method, second edition, Wiley, New York, 2000.

    MATH  Google Scholar 

  4. J. Beck, On the lattice property of the plane and some problems of Dirac, Motzkin and Erdős in combinatorial geometry, Combinatorica, 3 (1983), 281–297.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Behrend, On sets of integers which contain no three in arithmetic progressions, Proc. Nat. Acad. Sci. U.S.A., 32 (1946), 331–332.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Braß, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005.

    MATH  Google Scholar 

  7. F. Chung, The number of different distances determined by n points in the plane, J. Combin. Theory Ser. A, 36 (1984), 342–354.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Chung, E. Szemerédi and W. T. Trotter, The number of distinct distances determined by a set of points in the Euclidean plane, Discrete Comput. Geom., 7 (1992), 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. L. Clarkson, H. Edelsbrunner, L. G. Guibas, M. Sharir and E. Welzl, Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom., 5 (1990), 99–160.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Dumitrescu, On distinct distances and λ-free point sets, Discrete Math. (2007), doi:10.1016/j.disc.2007.11.046.

  11. P. Erdős, On sets of distances of n points, Amer. Math. Monthly, 53 (1946), 248–250.

    Article  MathSciNet  Google Scholar 

  12. P. Erdős, Some remarks on set theory, Proc. Amer. Math. Soc., 1 (1950), 127–141.

    Article  MathSciNet  Google Scholar 

  13. P. Erdős, Néhány geometriai problémáról, Mat. Lapok, 8 (1957), 86–92 (in Hungarian); Mathematical Reviews, 20 (1959), pp. 6056.

    MathSciNet  Google Scholar 

  14. P. Erdős, Some of my old and new problems in elementary number theory and geometry, Proceedings of the Sundance Conference on Combinatorics and Related Topics, Sundance, Utah, 1985; Congressus Numerantium, 50 (1985), 97–106.

  15. P. Erdős, On some metric and combinatorial geometric problems, Discrete Math., 60 (1986), 147–153.

    Article  MathSciNet  Google Scholar 

  16. P. Erdős, Some old and new problems in combinatorial geometry, Applications of Discrete Mathematics (Clemson, SC, 1986), SIAM, Philadelphia, PA, 1988, 32–37.

    Google Scholar 

  17. P. Erdős, Some of my recent problems in combinatorial number theory, geometry and combinatorics, Graph Theory, Combinatorics, Algorithms and Applications, Vol. 1 (Y. Alavi et al, eds.), Wiley, 1995, 335–349.

  18. P. Erdős, Z. Füredi, J. Pach and I. Z. Ruzsa, The grid revisited, Discrete Math., 111 (1993), 189–196.

    Article  MathSciNet  Google Scholar 

  19. P. Erdős and R. Guy, Distinct distances between lattice points, Elem. Math., 25 (1970), 121–123.

    MathSciNet  Google Scholar 

  20. P. Erdős, D. Hickerson and J. Pach, A problem of Leo Moser about repeated distances on the sphere, Amer. Math. Monthly, 96 (1989), 569–575.

    Article  MathSciNet  Google Scholar 

  21. P. Erdős and G. Purdy, Extremal problems in combinatorial geometry, Handbook of Combinatorics, Vol. I (R. L. Graham, M. Grötschel, and L. Lovász, eds.), Elsevier, Amsterdam, 1995, 809–874.

    Google Scholar 

  22. P. Erdős and J. Surányi, Topics in the Theory of Numbers, second edition, Springer, New York, 2003.

    Google Scholar 

  23. P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc., 16 (1941), 212–215.

    Article  MathSciNet  Google Scholar 

  24. R. K. Guy, Unsolved Problems in Number Theory, third edition, Springer, New York, 2004.

    MATH  Google Scholar 

  25. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, fifth edition, Oxford University Press, 1979.

  26. N. Katz and G. Tardos, A new entropy inequality for the Erdős distance problem, Towards a Theory of Geometric Graphs (J. Pach, ed.), Contemporary Mathematics, AMS, 2004, 119–126.

  27. J. Komlós, J. Pintz and E. Szemerédi, A lower bound for Heilbronn’s problem, J. London Math. Soc., 25 (1982), 13–24.

    Article  MATH  MathSciNet  Google Scholar 

  28. J. Komlós, M. Sulyok and E. Szemerédi, Linear problems in combinatorial number theory, Acta Math. Acad. Sci. Hungar., 26 (1975), 113–121.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Lefmann and T. Thiele, Point sets with distinct distances, Combinatorica, 15 (1995), 379–408.

    Article  MATH  MathSciNet  Google Scholar 

  30. B. Lindström, An inequality for B 2-sequences, J. Combin. Theory, 6 (1969), 211–212.

    Article  MATH  Google Scholar 

  31. L. Moser, On different distances determined by n points, Amer. Math. Monthly, 59 (1952), 85–91.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. Pach, Midpoints of segments induced by a point set, Geombinatorics, 13 (2003), 98–105.

    MATH  MathSciNet  Google Scholar 

  33. J. Pach and P. K. Agarwal, Combinatorial Geometry, Wiley-Interscience, New York, 1995.

    MATH  Google Scholar 

  34. J. Pach and G. Tardos, Isosceles triangles determined by a planar point set, Graphs Combin., 18 (2002), 769–779.

    Article  MATH  MathSciNet  Google Scholar 

  35. C. Pomerance and A. Sárközy, Combinatorial Number Theory, Handbook of Combinatorics, Vol. I (R. L. Graham, M. Grötschel, and L. Lovász, eds.), Elsevier, Amsterdam, 1995, 967–1018.

    Google Scholar 

  36. S. Sidon, Ein Satz über trigonometrische Polynome und seine Anwendung in der Theorie der Fourier-Reihen, Math. Ann., 106 (1932), 536–539.

    Article  MathSciNet  Google Scholar 

  37. J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc., 43 (1938), 377–385.

    Article  MATH  MathSciNet  Google Scholar 

  38. J. Solymosi and Cs. D. Tóth, Distinct distances in the plane, Discrete Comput. Geom., 25 (2001), 629–634.

    MATH  MathSciNet  Google Scholar 

  39. L. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combin. Probab. Comput., 6 (1997), 353–358.

    Article  MATH  MathSciNet  Google Scholar 

  40. G. Tardos, On distinct sums and distinct distances, Adv. Math., 180 (2003), 275–289.

    Article  MATH  MathSciNet  Google Scholar 

  41. T. Thiele, Geometric Selection Problems and Hypergraphs, Dissertation, Freie Universität Berlin, 1995.

  42. T. Thiele, The no-four-on-circle problem, J. Combin. Theory Ser. A, 71 (1995), 332–334.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Dumitrescu.

Additional information

Supported in part by NSF CAREER grant CCF-0444188.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumitrescu, A. On distinct distances among points in general position and other related problems. Period Math Hung 57, 165–176 (2008). https://doi.org/10.1007/s10998-008-8165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-008-8165-4

Mathematics subject classification number

Key words and phrases

Navigation