Skip to main content
Log in

New properties and representations for members of the power-variance family. I

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We derive new Wright-function representations for the densities of the generating measures of most representatives of the power-variance family of distributions. For all members of this family, we construct new saddlepoint-type approximations having an arbitrary fixed number of refining terms. To this end, we derive new, “exponentially small,” Poincaré series for a subclass of the Wright functions whose coefficients are expressed in terms of the Zolotarev polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.L.J. Braaksma, Asymptotic expansions and analytic continuations for a class of Barnes integrals, Compos. Math., 15:239–341, 1963.

    MathSciNet  MATH  Google Scholar 

  2. J.M. Chambers, C.L. Mallows, and B.W. Stuck, A method for simulating stable random variables, J. Am. Stat. Assoc., 71:340–344, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  3. P.K. Dunn and G.K. Smyth, Series evaluation of Tweedie exponential dispersion model densities, Stat. Comput., 15:267–280, 2005.

    Article  MathSciNet  Google Scholar 

  4. P.K. Dunn and G.K. Smyth, Evaluation of Tweedie exponential dispersion model densities by Fourier inversion, Stat. Comput., 18:73–86, 2008.

    Article  MathSciNet  Google Scholar 

  5. R. Gorenflo, Yu. Luchko, and F. Mainardi, Analytical properties and applications of the Wright function, Fract. Calc. Appl. Anal., 2:383–414, 1999.

    MathSciNet  MATH  Google Scholar 

  6. K.J. Hochberg and V. Vinogradov, Structural, continuity, and asymptotic properties of a branching particle system, Lith. Math. J., 49:241–270, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Hougaard, Analysis of Multivariate Survival Data, Springer, New York, 2000.

    Book  MATH  Google Scholar 

  8. I.A. Ibragimov and Yu.V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, 1971.

    MATH  Google Scholar 

  9. A.D. Ioffe and V.M. Tihomirov, Theory of Extremal Problems, North-Holland, New York, 1979.

    MATH  Google Scholar 

  10. B. Jørgensen, The Theory of Dispersion Models, Chapman & Hall, London, 1997.

    Google Scholar 

  11. B. Jørgensen, J.R. Martínez, and V. Vinogradov, Domains of attraction to Tweedie distributions, Lith. Math. J., 49:399–425, 2009.

    Article  MathSciNet  Google Scholar 

  12. F.W.J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1997.

    MATH  Google Scholar 

  13. R.B. Paris, Exponentially small expansions in the asymptotics of the Wright function, J. Comput. Appl. Math., 234:488–504, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  14. R.B. Paris, Exponential smoothing of the Wright function, Technical Report MS 11:01, University of Abertay Dundee, 2011.

  15. R.B. Paris, Hadamard Expansions and Hyperasymptotic Evaluation: An Extension of the Method of Steepest Descents, Cambridge Univ. Press, Cambridge, 2011.

    MATH  Google Scholar 

  16. R.B. Paris and D. Kaminski, Asymptotics and Mellin–Barnes Integrals, Cambridge Univ. Press, Cambridge, 2001.

    Book  MATH  Google Scholar 

  17. H. Poincaré, Sur les intégrales irrégulières des équations linéaires, Acta Math., 8:295–344, 1886.

    Article  MathSciNet  MATH  Google Scholar 

  18. M.C.K. Tweedie, An index which distinguishes between some important exponential families, in J.K. Ghosh and J. Roy (Eds.), Statistics: Applications and New Directions. Proceedings of the Indian Statistical Institute Golden Jubilee International Conference, Indian Statistical Institute, Calcutta, 1984, pp. 579–604.

    Google Scholar 

  19. V.V. Uchaikin and V.M. Zolotarev, Chance and Stability, VSP, Utrecht, 1999.

    Book  MATH  Google Scholar 

  20. V. Vinogradov, On the power-variance family of probability distributions, Commun. Stat., Theory Methods, 33(5):1007–1029, 2004. Errata: Commun. Stat., Theory Methods, 33(10):2573–2573, 2005.

  21. V. Vinogradov, Local theorems related to Lévy-type branching mechanism, Commun. Stoch. Anal., 1:393–413, 2007.

    MathSciNet  MATH  Google Scholar 

  22. V. Vinogradov, On infinitely divisible exponential dispersion model related to Poisson-exponential distribution, Commun. Stat., Theory Methods, 36:253–263, 2007.

    Article  MATH  Google Scholar 

  23. V. Vinogradov, R.B. Paris, and O.L. Yanushkevichiene, New properties and representations for members of the power-variance family. II, Lith. Math. J., 2013 (in press).

  24. C.S. Withers and S. Nadarajah, On the compound Poisson-gamma distribution, Kybernetika, 47:15–37, 2011.

    MathSciNet  MATH  Google Scholar 

  25. J. Wojdylo, On the coefficients that arise from Laplace’s method, J. Comput. Appl. Math., 196:241–266, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  26. E.M. Wright, The asymptotic expansion of the generalized Bessel function, Proc. London Math. Soc. (2), 38(1):257–270, 1935.

    Article  Google Scholar 

  27. O.L. Yanushkevichiene, The Parameter Estimators for the Distributions of Stable Laws, PhD dissertation, Vilnius University, 1979 (in Russian).

  28. V.M. Zolotarev, One-Dimensional Stable Distributions, Amer. Math. Soc., Providence, RI, 1986.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Vinogradov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinogradov, V., Paris, R.B. & Yanushkevichiene, O. New properties and representations for members of the power-variance family. I. Lith Math J 52, 444–461 (2012). https://doi.org/10.1007/s10986-012-9186-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-012-9186-0

Keywords

MSC

Navigation