Skip to main content
Log in

Structural, continuity, and asymptotic properties of a branching particle system

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We delineate a connection between the stochastic evolution of the cluster structure of a specific branching–diffusing particle system and a certain previously unknown structure-invariance property of a related class of distributions. Thus, we demonstrate that a Pólya–Aeppli sum of i.i.d.r.v.’s with a common zero-modified geometric distribution also follows a Pólya–Aeppli law. The consideration of these classes is motivated by and applied to studying subtle properties of this branching–diffusing particle system, which belongs to the domain of attraction of a continuous Dawson–Watanabe superprocess. We illustrate this structure-invariance property by considering the Athreya–Ney-type representation of the cluster structure of our particle system. Also, we apply this representation to prove the continuity in mean square of a related real-valued stochastic process. In contrast to other works in this field, we impose the condition that the initial random number of particles follows a Pólya–Aeppli law – a condition that is consistent with stochastic models that emerge in such varied fields as population genetics, ecology, insurance risk, and bacteriophage growth. Our results extend some recent work of Vinogradov. Specifically, we resolve the issue of noninvariance of the initial field and manage to avoid related anomalies that arose in earlier studies. Also, we demonstrate that under natural additional assumptions, our particle system must have evolved from a scaled Poisson field starting at a specified time. In some sense, this result provides a partial justification for assuming that the system had originated at a certain time in the past from a Poisson field of particles. We demonstrate that the corresponding high-density limit of our branching–diffusing particle system inherits an analogous backward-evolution property. Several of our results illustrate a general convergence theorem of Jørgensen et al. to members of the power-variance family of distributions. Finally, combining a Poisson mixture representation for the branching particle system considered with certain sharp analytical methods gives us an explicit representation for the leading error term of the high-density approximation as a linear combination of related Bessel functions. This refines a theorem of Vinogradov on the rate of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aleškevičienė and V. Statulevičius, Theorems of large deviations in the approximation by the compound Poisson distribution, Acta Appl. Math., 78:21–34, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  2. K.B. Athreya and P.E. Ney, Branching Processes, Springer, New York, 1972.

    MATH  Google Scholar 

  3. A.D. Barbour, O. Chryssaphinou, and E. Vaggelatou, Applications of compound Poisson approximation, in C.A. Charalambides, M.V. Koutras, and N. Balakrishnan (Eds.), Probability and Statistical Models with Applications, Chapman & Hall, Boca-Raton, 2001, pp. 41–62.

    Google Scholar 

  4. M. Baron and A.L. Rukhin, Distribution of the number of visits of a random walk, Commun. Stat. Stochast. Models, 15:593–597, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  5. M.V. Boutsikas, Compound Poisson process approximation for locally dependent real-valued random variables via a new coupling equality, Bernoulli, 12:501–514, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  6. M.V. Boutsikas and M.V. Koutras, Modeling claim exceedances over thresholds, Insur. Math. Econ., 30:67–83, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  7. M.V. Boutsikas and M.V. Koutras, On the number of overflown urns and excess balls in an allocation model with limited urn capacity, J. Stat. Plann. Infer., 104:259–286, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  8. D.R. Cox, Renewal Theory, Methuen, London, 1962.

    MATH  Google Scholar 

  9. H. Cramér and M.R. Leadbetter, Stationary and Related Stochastic Processes: Sample Function Properties and Their Applications, Wiley, New York, 1967.

    MATH  Google Scholar 

  10. D.A. Dawson and K. Fleischmann, Strong clumping of critical space-time branching models in subcritical dimensions, Stoch. Process. Appl., 30:193–208, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  11. D.A. Dawson, K.J. Hochberg, and V. Vinogradov, On path properties of super-2 processes I, in D.A. Dawson (Ed.), Measure-Valued Processes, Stochastic Partial Differential Equations and Interacting Systems, CRM Proc. Lecture Notes, Vol. 5, Amer. Math. Soc., Providence, 1994, pp. 69–82.

    Google Scholar 

  12. D.A. Dawson, K.J. Hochberg, and V. Vinogradov, On path properties of super-2 processes II, in M.G. Cranston and M.A. Pinsky (Eds.), Stochastic Analysis, Proc. Sympos. Pure Math., Vol. 57, Amer. Math. Soc., Providence, 1995, pp. 383–403.

    Google Scholar 

  13. D.A. Dawson, K.J. Hochberg, and V. Vinogradov, High-density limits of hierarchically structured branching-diffusing populations, Stoch. Process. Appl., 62:191–222, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  14. D.A. Dawson, K.J. Hochberg, and V. Vinogradov, On weak convergence of branching particle systems undergoing spatial motion, in J.-P. Fouque, K.J. Hochberg, and E. Merzbach (Eds.), Stochastic Analysis: Random Fields and Measure-Valued Processes, Israel Math. Conf. Proc., Vol. 10, Bar-Ilan Univ., Ramat-Gan, 1996, pp. 65–79.

    Google Scholar 

  15. D.A. Dawson and V. Vinogradov, Almost-sure path properties of (2, d, β)-superprocesses, Stoch. Process. Appl., 51:221–258, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  16. R.R. Delongchamp, C.R. Valentine, and H.V. Malling, Estimation of the average burst size of ΦX174 am3, cs70 for use in mutation assays with transgenic mice, Environ. Mol. Mutagen., 37:356–360, 2001.

    Article  Google Scholar 

  17. E.B. Dynkin, An Introduction to Branching Measure-Valued Processes, Amer. Math. Soc., Providence, 1994.

    MATH  Google Scholar 

  18. M.V. Fedoryuk, Asymptotics: Integrals and Series, Nauka, Moscow, 1987 (in Russian).

    MATH  Google Scholar 

  19. M.V. Fedoryuk, Asymptotic methods in analysis, in R.V. Gamkrelidze (Ed.), Analysis I. Integral Representations and Asymptotic Methods, Vol. 1, part 2, Springer, Berlin, 1989, pp. 83–191.

    Google Scholar 

  20. B.V. Gnedenko and A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison–Wesley, Reading, 1954.

    MATH  Google Scholar 

  21. L.G. Gorostiza, Space scaling limit theorems for infinite particle branching Brownian motions with immigration, in M. Metivier and É. Pardoux (Eds.), Stochastic Differential Systems. Filtering and Control. Proc. 4th IFIP-WG 7/1 Working Conf. held in Marseille-Luminy, March 12–17, 1984, Lecture Notes in Control and Inform. Sci., Vol. 69, Springer, Berlin, 1985, pp. 91–99.

    Google Scholar 

  22. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, 7th edition, Academic, Oxford, 2007.

    Google Scholar 

  23. T.E. Harris, The Theory of Branching Processes, Springer, Berlin, 1963.

    MATH  Google Scholar 

  24. P. Hougaard, M.-L.T. Lee, and G.A. Whitmore, Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes, Biometrics, 53:1225–1238, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  25. N.L. Johnson, A.W. Kemp, and S. Kotz, Univariate Discrete Distributions, 3rd edition, Wiley, Hoboken, NJ, 2005.

    MATH  Google Scholar 

  26. B. Jørgensen, Some properties of exponential dispersion models, Scand. J. Stat., 13:187–197, 1986.

    Google Scholar 

  27. B. Jørgensen, Exponential dispersion models and extensions: A review, Int. Stat. Rev., 60:5–20, 1992.

    Article  Google Scholar 

  28. B. Jørgensen, The Theory of Dispersion Models, Chapman & Hall, London, 1997.

    Google Scholar 

  29. B. Jørgensen, J.R. Martínez, and M. Tsao, Asymptotic behaviour of the variance function, Scand. J. Stat., 21:223–243, 1994.

    Google Scholar 

  30. B. Jørgensen, J.R. Martínez, and V. Vinogradov, Domains of attraction to Tweedie distributions, Lith. Math. J., 49(4), 2009.

  31. B. Jørgensen and M.C.P. de Souza, Fitting Tweedie’s compound Poisson model to insurance claims data, Scand. Actuar. J., 1:69–93, 1994.

    Google Scholar 

  32. B. Jørgensen and V. Vinogradov, Convergence to Tweedie models and related topics, in N. Balakrishnan (Ed.), Advances on Theoretical and Methodological Aspects of Probability and Statistics, Vol. 2, Chap. 30, Francis & Taylor, London, 2002, pp. 473–488.

    Google Scholar 

  33. W.S. Kendal, Spatial aggregation of the Colorado potato beetle described by an exponential dispersion model, Ecol. Model., 151:261–269, 2002.

    Google Scholar 

  34. W.S. Kendal, A scale invariant clustering of genes on human chromosome 7, BMC Evol. Biol., 4(3), 2004.

  35. W.S. Kendal, Scale invariant correlations between genes and snps on human chromosome 1 reveal potential evolutionary mechanisms, J. Theor. Biol., 245:329–340, 2007.

    Article  Google Scholar 

  36. W.S. Kendal, F.J. Lagerwaard, and O. Agboola, Characterization of the frequency distribution for human hematogenous metastases: Evidence for clustering and a power variance function, Clin. Exp. Metastas., 18:219–229, 2000.

    Article  Google Scholar 

  37. F.B. Knight, Essentials of Brownian Motion and Diffusion, Amer. Math. Soc., Providence, 1981.

    MATH  Google Scholar 

  38. C.C. Kokonendji, S. Dossou-Gbété, and C.G.B. Demétrio, Some discrete exponential dispersion models: Poisson–Tweedie and Hinde–Demetrio classes, SORT, 28:201–214, 2004.

    MathSciNet  MATH  Google Scholar 

  39. A.N. Kolmogorov and N.A. Dmitriev, Branching random processes, Dokl. Akad. Nauk SSSR, 56(1):7–10, 1947 (in Russian). English translation in A.N. Shiryayev (Ed.), SelectedWorks of A.N. Kolmogorov, Vol. 2, Kluwer, Dordrecht, 1992, pp. 309–314.

    Google Scholar 

  40. U. Kuchler and M. Sorensen, Exponential Families of Stochastic Processes, Springer, New York, 1997.

    Google Scholar 

  41. J.-F. Le Gall, Spatial Branching Processes, Random Snakes, and Partial Differential Equations, Birkhäuser, Basel, 1999.

    MATH  Google Scholar 

  42. G. Letac, Lectures on Natural Exponential Families and Their Variance Functions, Monogr. Math., Vol. 50, Instituto de Mathematica Pura e Aplicada, Rio de Janeiro, 1992.

    MATH  Google Scholar 

  43. J. Neveu and J.W. Pitman, The branching process in a Brownian excursion, in Lecture Notes in Math., Vol. 1372, Springer, Berlin, 1989, pp. 248–257.

    Google Scholar 

  44. H.H. Panjer and G.E. Willmot, Insurance Risk Models, Society of Actuaries, Schaumburg IL, 1992.

    Google Scholar 

  45. E.A. Perkins, Dawson–Watanabe superprocesses and measure-valued diffusions, in P. Bernard (Ed.), Lectures on Probability Theory and Statistics/Ecole d’Eté de Probabilités de Saint Flour XXIX – 1999, Lecture Notes in Math., Vol. 1781, Springer, Berlin, 2002, pp. 125–329.

    Google Scholar 

  46. S. Robin, A compound Poisson model for word occurrences in DNA sequences, Appl. Stat., 51:437–451, 2002.

    MATH  MathSciNet  Google Scholar 

  47. B.A. Sevast’yanov, Transient phenomena in branching stochastic processes, Theory Probab. Appl., 4:113–128, 1959.

    Article  MATH  Google Scholar 

  48. G.K. Smyth and B. Jørgensen, Fitting Tweedie’s compound Poisson model to insurance claims data: Dispersion modelling, Astin Bull., 32:143–157, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  49. O.E. Trofimov and D.G. Frizen, Coefficients of the asymptotic expansion of integrals via Laplace method, Automat. Monitoring Measuring, 2:97–98, 1981.

    Google Scholar 

  50. V. Vinogradov, On the power-variance family of probability distributions, Commun. Stat. Theory Methods, 33:1007–1029, 2004 (Errata p. 2573).

    Article  MATH  Google Scholar 

  51. V. Vinogradov, Local approximations for branching particle systems, Commun. Stoch. Anal., 1:293–309, 2007.

    MathSciNet  Google Scholar 

  52. V. Vinogradov, On infinitely divisible exponential dispersion model related to Poisson-exponential distribution, Commun. Stat. Theory Methods, 36:253–263, 2007.

    Article  MATH  Google Scholar 

  53. V. Vinogradov, On structural and asymptotic properties of some classes of distributions, Acta Appl. Math., 97:335–351, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  54. V. Vinogradov, Properties of certain Lévy and geometric Lévy processes, Commun. Stoch. Anal., 2:193–208, 2008.

    MathSciNet  Google Scholar 

  55. X. Zhou, A zero-one law of almost sure local extinction for (1 + β)-super-Brownian motion, Stoch. Process. Appl., 118:1982–1996, 2008.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Hochberg.

Additional information

Dedicated to the memory of Vytautas Statulevičius

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochberg, K.J., Vinogradov, V. Structural, continuity, and asymptotic properties of a branching particle system. Lith Math J 49, 241–270 (2009). https://doi.org/10.1007/s10986-009-9049-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-009-9049-5

Keywords

MSC

Navigation