Skip to main content

Advertisement

Log in

Machine learning in landscape ecological analysis: a review of recent approaches

  • Review Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Artificial Intelligence (AI) has rapidly developed over the past several decades. Several related AI approaches, such as Machine Learning (ML), have been applied to research on landscape patterns and ecological processes.

Objectives

Our goal was to review the methods of AI, particularly ML, used in studies related to landscape ecology and the main topics addressed. We aimed to assess the trend in the number of ML papers and the methods used therein, and provide a synopsis and prospectus of current use and future applications of ML in landscape ecology.

Methods

We conducted a systematic literature search and selected 125 papers for review. These were examined and scored according to multiple criteria regarding methods and topic. We applied quantitative statistical methods, including cluster analysis based on titles, abstracts, and keywords and a non-metric multidimensional scaling based on attributes assigned during the review. We used Random Forests machine learning to describe the differences between identified clusters in terms of the topics and methods they included.

Results

The most frequent method found was Random Forests, but it is noteworthy to mention the increasing popularity of tools related to Deep Learning. The topics cover both ecologically oriented issues and the landscape-human interface. There has been a rapid increase in ML and AI methods in landscape ecology research, with Deep Learning and complex multi-step pipeline AI methods emerging in the last several years.

Conclusions

The rapid increase in the number of ML papers in landscape ecology research, and the range of methods employed in them, suggest explosive growth in application of these methods in landscape ecology. The increase of Deep Learning approaches in the most recent years suggest a major change in analytical paradigms and methodologies that we feel may transform the field and enable analyses of more complex pattern process relationships across vaster data sets than has been possible previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

adapted from Willcock et al. 2018, Fayyad et al. 1996. The machine learning approaches are adapted from Géron 2019, Hapke and Nelson 2020, and Zhou 2018

Similar content being viewed by others

Data availability

Data included as supplementary material.

Code availability

Not applicable.

Abbreviations

AI:

Artificial intelligence

BRT:

Boosted regression trees

CNN:

Convolutional neural networks

DT:

Decision trees

ES:

Expert systems

GAM:

Generalized additive models

LoR:

Logistic regression

ML:

Machine learning

MaxEnt:

Maximum entropy

MIR:

Model improvement ratio

NMDS:

Non-metric multidimensional scaling

NN:

Neural networks

RF:

Random forests

RNN:

Recurrent neural networks

SML:

Supervised learning

SVM:

Support vector machines

UsML:

Unsupervised learning

WoS:

Web of Science

XGBoo:

XGBoost—gradient boosting machine

References

  • Aiba M, Kurokawa H, Onoda Y, Oguro M, Nakashizuka T, Masaki T (2016) Context-dependent changes in the functional composition of tree communities along successional gradients after land-use change. J Ecol 104(5):1347–1356

    Article  Google Scholar 

  • Albert A, Kaur J, Gonzalez MC (2017) Using convolutional networks and satellite imagery to identify patterns in Urban environments at a large scale. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1357–1366

  • Alshehhi R, Marpu PR, Woon WL, Dalla Mura M (2017) Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS J Photogramm Remote Sens 130:139–149

    Article  Google Scholar 

  • Altartouri A, Nurminen L, Jolma A (2015) Spatial neighborhood effect and scale issues in the calibration and validation of a dynamic model of Phragmites australis distribution—a cellular automata and machine learning approach. Environ Model Softw 71:15–29

    Article  Google Scholar 

  • Anderson EF, McLoughlin L, Liarokapis F, Peters C, Petridis P, de Freitas S (2010) Developing serious games for cultural heritage: a state-of-the-art review. Virtual Real 14(4):255–275

    Article  Google Scholar 

  • Androutsopoulou A, Karacapilidis N, Loukis E, Charalabidis Y (2019) Transforming the communication between citizens and government through AI-guided chatbots. Gov Inf Q 36(2):358–367

    Article  Google Scholar 

  • Arndt J, Lunga D, Weaver J, LeDoux T, Tennille S (2019) Multiscale based characterization and classification of urban land-use. 2019 In: IEEE International geoscience and remote sensing symposium, IEEE international symposium on geoscience and remote sensing IGARSS. pp. 9470–9473

  • Aschwanden G (2016) Neighbourhood detection with analytical tools. In: Proceedings of the 21st international conference on computer—aided architectural design research in Asia, pp. 13–22

  • Asner GP, Sousan S, Knapp DE et al (2016) Rapid forest carbon assessments of oceanic islands: a case study of the Hawaiian archipelago. Carbon Balance and Manag. https://doi.org/10.1186/s13021-015-0043-4

    Article  Google Scholar 

  • Athukorala D, Murayama Y (2020) Spatial variation of land use/cover composition and impact on surface Urban Heat Island in a Tropical Sub-Saharan City of Accra, Ghana. Sustainability. https://doi.org/10.3390/su12197953

    Article  Google Scholar 

  • Bahrammirzaee A (2010) A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Comput Appl 19(8):1165–1195

    Article  Google Scholar 

  • Baltensperger AP, Joly K (2019) Using seasonal landscape models to predict space use and migratory patterns of an arctic ungulate. Mov Ecol. https://doi.org/10.1186/s40462-019-0162-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Balzotti CS, Asner GP (2018) Biotic and abiotic controls over canopy function and structure in humid Hawaiian forests. Ecosystems 21(2):331–348

    Article  CAS  Google Scholar 

  • Balzotti CS, Asner GP, Adkins ED, Parsons EW (2020) Spatial drivers of composition and connectivity across endangered tropical dry forests. J Appl Ecol 57(8):1593–1604

    Article  Google Scholar 

  • Barbosa JM, Asner GP (2017) Prioritizing landscapes for restoration based on spatial patterns of ecosystem controls and plant-plant interactions. J Appl Ecol 54(5):1459–1468

    Article  Google Scholar 

  • Bastille-Rousseau G, Wittemyer G (2021) Characterizing the landscape of movement to identify critical wildlife habitat and corridors. Conserv Biol 35(1):346–359

    Article  PubMed  Google Scholar 

  • Bayr U, Puschmann O (2019) Automatic detection of woody vegetation in repeat landscape photographs using a convolutional neural network. Eco Inform 50:220–233

    Article  Google Scholar 

  • Belgiu M, Dragut L (2016) Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31

    Article  Google Scholar 

  • Bone C, Dragicevic S (2009) Defining transition rules with reinforcement learning for modeling land cover change. Simul-Trans Soc Modeling Simula Int 85(5):291–305

    Article  Google Scholar 

  • Bounas A, Keroglidou M, Toli EA et al (2020) Constrained by aliens, shifting landscape, or poor water quality? Factors affecting the persistence of amphibians in an urban pond network. Aquat Conserv-Mar Freshw Ecosyst 30(5):1037–1049

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Brieuc MSO, Waters CD, Drinan DP, Naish KA (2018) A practical introduction to random forest for genetic association studies in ecology and evolution. Mol Ecol Resour 18(4):755–766

    Article  PubMed  Google Scholar 

  • Brock PM, Fornace KM, Grigg MJ et al (2019) Predictive analysis across spatial scales links zoonotic malaria to deforestation. In: Proceedings of the Royal Society B-Biological Sciences 286(1894)

  • Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P (2017) Geometric deep learning going beyond Euclidean data. IEEE Signal Process Mag 34(4):18–42

    Article  Google Scholar 

  • Brovelli MA, Crespi M, Fratarcangeli F, Giannone F, Realini E (2008) Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method. ISPRS J Photogramm Remote Sens 63(4):427–440

    Article  Google Scholar 

  • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167

    Article  Google Scholar 

  • Chang NB, Xuan ZM, Wimberly B (2011) MODIS-based spatiotemporal patterns of soil moisture and evapotranspiration interactions in Tampa Bay urban watershed. In: Gao W, Jackson TJ, Wang J, Chang NB (eds), Remote sensing and modeling of ecosystems for sustainability VIII, Proceedings of SPIE.

  • Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46(1–3):131–159

    Article  Google Scholar 

  • Chapman DS, Bonn A, Kunin WE, Cornell SJ (2010) random forest characterization of upland vegetation and management burning from aerial imagery. J Biogeogr 37(1):37–46

    Article  Google Scholar 

  • Chen S, Whiteman A, Li A et al (2019) An operational machine learning approach to predict mosquito abundance based on socioeconomic and landscape patterns. Landsc Ecol 34(6):1295–1311

    Article  Google Scholar 

  • Chen X, Zhao J, Chen YH, Zhou W, Hughes AC (2020) Automatic standardized processing and identification of tropical bat calls using deep learning approaches. Biol Conserv. https://doi.org/10.1016/j.biocon.2019.108269

    Article  Google Scholar 

  • Christensen M, Arsanjani JJ (2020) Stimulating implementation of sustainable development goals and conservation action: predicting future land use/cover change in Virunga National Park, Congo. Sustainability. https://doi.org/10.3390/su12041570

    Article  Google Scholar 

  • Christin S, Hervet E, Lecomte N (2019) Applications for deep learning in ecology. Methods Ecol Evol 10(10):1632–1644

    Article  Google Scholar 

  • COE (2020) Council of Europe and Artificial Intelligence. https://www.coe.int/en/web/artificial-intelligence/home. Accessed 16 March 2021

  • Cracknell MJ, Reading AM (2014) Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput Geosci 63:22–33

    Article  Google Scholar 

  • Curry CM, Ross JD, Contina AJ, Bridge ES (2018) Varying dataset resolution alters predictive accuracy of spatially explicit ensemble models for avian species distribution. Ecol Evol 8(24):12867–12878

    Article  PubMed  PubMed Central  Google Scholar 

  • Cushman SA, Huettmann F (2010) Spatial Complexity, Informatics, and Wildlife Conservation. Springer

  • Cushman SA, Wasserman TN (2018) Landscape applications of machine learning: Comparing random forests and logistic regression in multi-scale optimized predictive modeling of American marten occurrence in northern Idaho, USA. In: Humphries G, Magness D, Huettmann F (eds) Machine learning for ecology and sustainable natural resource management. Springer, Cham, pp 185–203

    Chapter  Google Scholar 

  • Cushman SA, Macdonald E, Landguth E, Malhi Y, Macdonald D (2017) Multiple-scale prediction of forest loss risk across Borneo. Landsc Ecol 32(8):1581–1598

    Article  Google Scholar 

  • Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT (2007) Random forests for classification in ecology. Ecology 88(11):2783–2792

    Article  PubMed  Google Scholar 

  • Davies AB, Brodrick PG, Parr CL, Asner GP (2020) Resistance of mound-building termites to anthropogenic land-use change. Environ Res Lett. https://doi.org/10.1088/1748-9326/aba0ff

    Article  Google Scholar 

  • Day CC, Zollner PA, Gilbert JH, McCann NP (2020) Individual-based modeling highlights the importance of mortality and landscape structure in measures of functional connectivity. Landsc Ecol 35(10):2191–2208

    Article  Google Scholar 

  • Debanshi S, Pal S (2020) Effects of water richness and seasonality on atmospheric methane emission from the wetlands of deltaic environment. Ecol Indic. https://doi.org/10.1016/j.ecolind.2020.106767

    Article  Google Scholar 

  • Debanshi S, Pal S (2020) Modelling water richness and habitat suitability of the wetlands and measuring their spatial linkages in mature Ganges delta of India. J Environ Manag. https://doi.org/10.1016/j.jenvman.2020.110956

    Article  Google Scholar 

  • Debats SR, Luo D, Estes LD, Fuchs TJ, Caylor KK (2016) A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes. Remote Sens Environ 179:210–221

    Article  Google Scholar 

  • Deo RC (2015) Machine learning in medicine. Circulation 132(20):1920–1930

    Article  PubMed  PubMed Central  Google Scholar 

  • Desjardins-Proulx P, Poisot T, Gravel D (2019) Artificial intelligence for ecological and evolutionary synthesis. Front Ecol Evol 7:12

    Article  Google Scholar 

  • Dimov D, Low F, Ibrakhimov M, Sarah Schonbrodt S, Conrad C (2017) Feature extraction and machine learning for the classification of active cropland in the Aral Sea basin. In: 2017 IEEE international geoscience and remote sensing symposium, IEEE international symposium on geoscience and remote sensing IGARSS. pp. 1804–1807

  • Djuric U, Marjanovic M, Susic V et al (2013) Land-use suitability analysis of Belgrade city suburbs using machine learning algorithm. In: Ivan I, Longley P, Fritsch D et al (eds) GIS Ostrava 2013 - Geoinformatics for City Transformation, pp. 49-61

  • Donnelly JP, Tack JD, Doherty KE, Naugle DE, Allred BW, Dreitz VJ (2017) Extending conifer removal and landscape protection strategies from sage-grouse to songbirds, a range-wide assessment. Rangel Ecol Manag 70:95–105

    Article  Google Scholar 

  • Drake JM, Randin C, Guisan A (2006) Modelling ecological niches with support vector machines. J Appl Ecol 43(3):424–443

    Article  Google Scholar 

  • Dronova I, Gong P, Clinton NE et al (2012) Landscape analysis of wetland plant functional types: the effects of image segmentation scale, vegetation classes and classification methods. Remote Sens Environ 127:357–369

    Article  Google Scholar 

  • Eikelboom JAJ, de Knegt HJ, Klaver M, van Langevelde F, van der Wal T, Prins HHT (2020) Inferring an animal’s environment through biologging: quantifying the environmental influence on animal movement. Mov Ecol. https://doi.org/10.1186/s40462-020-00228-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  CAS  PubMed  Google Scholar 

  • European Commission (2019) A definition of AI: main capabilities and scientific disciplines. Definition developed for the purpose of the deliverables of the EC high-level expert group on artificial intelligence. https://digital-strategy.ec.europa.eu/en/library/definition-artificial-intelligence-main-capabilities-and-scientific-disciplines. Accessed 10 July 2021

  • Evans JS, Cushman SA (2009) Gradient modeling of conifer species using random forests. Landsc Ecol 24:673–683

    Article  Google Scholar 

  • Fagerholm N, Kayhko N, Ndumbaro F, Khamis M (2012) Community stakeholders’ knowledge in landscape assessments—mapping indicators for landscape services. Ecol Ind 18:421–433

    Article  Google Scholar 

  • Farley SS, Dawson A, Goring SJ, Williams JW (2018) Situating ecology as a big-data science: current advances, challenges, and solutions. Bioscience 68(8):563–576

    Article  Google Scholar 

  • Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17(3):37–54

    Google Scholar 

  • Feng YJ, Liu Y, Batty M (2016) Modeling urban growth with GIS based cellular automata and least squares SVM rules: a case study in Qingpu-Songjiang area of Shanghai, China. Stoch Env Res Risk Assess 30(5):1387–1400

    Article  Google Scholar 

  • Folmer EO, van Beusekom JEE, Dolch T et al (2016) Consensus forecasting of intertidal seagrass habitat in the Wadden Sea. J Appl Ecol 53(6):1800–1813

    Article  Google Scholar 

  • Fountain-Jones NM, Craft ME, Funk WC et al (2017) Urban landscapes can change virus gene flow and evolution in a fragmentation-sensitive carnivore. Mol Ecol 26(22):6487–6498

    Article  PubMed  Google Scholar 

  • Fox JT, Magoulick DD (2019) Predicting hydrologic disturbance of streams using species occurrence data. Sci Total Environ 686:254–263

    Article  CAS  PubMed  Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19(4):474–499

    Article  Google Scholar 

  • Frommhold M, Heim A, Barabanov M et al (2019) Breeding habitat and nest-site selection by an obligatory “nest-cleptoparasite”, the Amur Falcon Falco amurensis. Ecol Evol 9(24):14430–14441

    Article  PubMed  PubMed Central  Google Scholar 

  • Géron A (2019) Hands-on machine learning with scikit-learn, keras, and tensorflow. O’Reilly, Sebastopol

    Google Scholar 

  • Geurts P, Irrthum A, Wehenkel L (2009) Supervised learning with decision tree-based methods in computational and systems biology. Mol BioSyst 5(12):1593–1605

    Article  CAS  PubMed  Google Scholar 

  • Giles JR, Plowright RK, Eby P, Peel AJ, McCallum H (2016) Models of eucalypt phenology predict bat population flux. Ecol Evol 6(20):7230–7245

    Article  PubMed  PubMed Central  Google Scholar 

  • Ginau A, Steiniger D, Hartmann R et al (2020) What settlements leave behind—pXRF compositional data analysis of archaeological layers from Tell el-Fara’in using machine learning (Buto, Egypt). Palaeogeogr Palaeoclimatol Palaeoecol. https://doi.org/10.1016/j.palaeo.2020.109666

    Article  Google Scholar 

  • Giri S, Zhang Z, Krasnuk D, Lathrop RG (2019) Evaluating the impact of land uses on stream integrity using machine learning algorithms. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.133858

    Article  PubMed  Google Scholar 

  • Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    Google Scholar 

  • Gray ME, Zachmann LJ, Dickson BG (2018) A weekly, continually updated dataset of the probability of large wildfires across western US forests and woodlands. Earth Syst Sci Data 10(3):1715–1727

    Article  Google Scholar 

  • Greaves HE, Eitel JUH, Vierling LA et al (2019) 20 cm resolution mapping of Tundra vegetation communities provides an ecological baseline for important research areas in a changing Arctic environment. Environ Res Commun. https://doi.org/10.1088/2515-7620/ab4a85

    Article  Google Scholar 

  • Griffiths P, Hostert P, Gruebner O, van der Linden S (2010) Mapping megacity growth with multi-sensor data. Remote Sens Environ 114(2):426–439

    Article  Google Scholar 

  • Grys BT, Lo DS, Sahin N et al (2017) Machine learning and computer vision approaches for phenotypic profiling. J Cell Biol 216(1):65–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutzwiller KJ, Chaudhary A (2020) Machine-learning models, cost matrices, and conservation based reduction of selected landscape classification errors. Landsc Ecol 35:249–255

    Article  Google Scholar 

  • Halilaj E, Rajagopal A, Fiterau M, Hicks JL, Hastie TJ, Delp SL (2018) Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. J Biomech 81:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Hapke H, Nelson C (2020) Building machine learning pipelines. O’Reilly, Sebastopol

    Google Scholar 

  • Hassell JM, Bettridge JM, Ward MJ et al (2021) Socio-ecological drivers of vertebrate biodiversity and human-animal interfaces across an urban landscape. Glob Change Biol 27(4):781–792

    Article  Google Scholar 

  • Helmer EH, Kennaway TA, Pedreros DH et al (2008) Land cover and forest formation distributions for St. Kitts, Nevis, St. Eustatius, Grenada and Barbados from decision tree classification of cloud-cleared satellite imagery. Caribb J Sci 44(2):175–198

    Article  Google Scholar 

  • Henderson EB, Ohmann JL, Gregory MJ, Roberts HM, Zald H (2014) Species distribution modelling for plant communities: stacked single species or multivariate modelling approaches? Appl Veg Sci 17(3):516–527

    Article  Google Scholar 

  • Hernandez-Orallo J (2017) Evaluation in artificial intelligence: from task-oriented to ability-oriented measurement. Artif Intell Rev 48(3):397–447

    Article  Google Scholar 

  • Hether TD, Hoffman EA (2012) Machine learning identifies specific habitats associated with genetic connectivity in Hyla squirella. J Evol Biol 25(6):1039–1052

    Article  CAS  PubMed  Google Scholar 

  • Hopton ME, Mayer AL (2006) Using self-organizing maps to explore patterns in species richness and protection. Biodivers Conserv 15(14):4477–4494

    Article  Google Scholar 

  • Horning N, Fleishman E, Ersts PJ, Fogarty FA, Zillig MW (2020) Mapping of land cover with open-source software and ultra-high-resolution imagery acquired with unmanned aerial vehicles. Remote Sens Ecol Conserv 6(4):487–497

    Article  Google Scholar 

  • Hounkpatin OKL, de Hipt FO, Bossa AY, Welp G, Amelung W (2018) Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkina Faso). CATENA 166:298–309

    Article  CAS  Google Scholar 

  • Huang C, Davis LS, Townshend JRG (2002) An assessment of support vector machines for land cover classification. Int J Remote Sens 23(4):725–749

    Article  Google Scholar 

  • Huang B, Xie CL, Tay R, Wu B (2009) Land-use-change modeling using unbalanced support-vector machines. Environ Plan B-Plan Des 36(3):398–416

    Article  Google Scholar 

  • Huang B, Zhao B, Song YM (2018) Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens Environ 214:73–86

    Article  Google Scholar 

  • Hudak AT, Strand EK, Vierling LA et al (2012) Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sens Environ 123:25–40

    Article  Google Scholar 

  • Huete A, Tran NN, Nguyen H, Xie QY, Katelaris C (2019) Forecasting pollen aerobiology with modis evi, land cover, and phenology using machine learning tools. In: 2019 IEEE international geoscience and remote sensing symposium, IEEE international symposium on geoscience and remote sensing IGARSS. pp. 5429–5432

  • Huettmann F, Craig EH, Herrick KA, Baltensperger AP, Humphries GRW, Lieske DJ, Miller K, Mullet TC, Oppel S, Resendiz C, Rutzen I, Schmid MS, Suwal MK, Young BD (2018) Use of machine learning (ML) for predicting and analyzing ecological and ‘presence only’ data: an overview of applications and a good outlook. In: Humphries G, Magness DR, Huettmann F (eds) Machine learning for ecology and sustainable natural resource management. Springer, Cham, pp 27–61

    Chapter  Google Scholar 

  • Jahani A, Rayegani B (2020) Forest landscape visual quality evaluation using artificial intelligence techniques as a decision support system. Stoch Env Res Risk Assess 34(10):1473–1486

    Article  Google Scholar 

  • Jasiewicz J, Netzel P, Stepinski TF (2014) Landscape similarity, retrieval, and machine mapping of physiographic units. Geomorphology 221:104–112

    Article  Google Scholar 

  • Jeong GY, Oeverdieck H, Park SJ, Huwe B, Liess M (2017) Spatial soil nutrients prediction using three supervised learning methods for assessment of land potentials in complex terrain. CATENA 154:73–84

    Article  CAS  Google Scholar 

  • Jones JS, Tullis JA, Haavik LJ, Guldin JM, Stephen FM (2014) Monitoring oak-hickory forest change during an unprecedented red oak borer outbreak in the Ozark Mountains: 1990 to 2006. J Appl Remote Sens. https://doi.org/10.1117/1.JRS.8.083687

    Article  Google Scholar 

  • Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349(6245):255–260

    Article  CAS  PubMed  Google Scholar 

  • Joshi A (2020) Machine learning and artificial intelligence. Springer, Cham

    Book  Google Scholar 

  • Kampichler C, Sierdsema H (2018) On the usefulness of prediction intervals for local species distribution model forecasts. Eco Inform 47:67–72

    Article  Google Scholar 

  • Karasov O, Heremans S, Kulvik M, Domnich A, Chervanyov I (2020) On how crowdsourced data and landscape organisation metrics can facilitate the mapping of cultural ecosystem services: an Estonian case study. Land 9(5):158

    Article  Google Scholar 

  • Kennedy RE, Yang ZQ, Braaten J et al (2015) Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA. Remote Sens Environ 166:271–285

    Article  Google Scholar 

  • Kerebel A, Gelinas N, Dery S, Voigt B, Munson A (2019) Landscape aesthetic modelling using Bayesian networks: conceptual framework and participatory indicator weighting. Landsc Urban Plan 185:258–271

    Article  Google Scholar 

  • Keshtkar H, Voigt W, Alizadeh E (2017) Land-cover classification and analysis of change using machine-learning classifiers and multi-temporal remote sensing imagery. Arabian J Geosci 10(6):1–5

    Article  Google Scholar 

  • Khan A, Sohail A, Zahoora U, Qureshi AS (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53(8):5455–5516

    Article  Google Scholar 

  • Klippel A, Zhao JY, Jackson KL et al (2019) Transforming earth science education through immersive experiences: delivering on a long held promise. J Educ Comput Res 57(7):1745–1771

    Article  Google Scholar 

  • Konapala G, Kao SC, Painter SL, Lu D (2020) Machine learning assisted hybrid models can improve streamflow simulation in diverse catchments across the conterminous US. Environ Res Lett 15(10):104022

    Article  Google Scholar 

  • Kong L, Liu Z, Wu J (2020) A systematic review of big data-based urban sustainability research: state-of-the-science and future directions. J Clean Prod 273:123142

    Article  Google Scholar 

  • Kruskal JB (1964) Nonmetric multidimensional-scaling—a numerical-method. Psychometrika 29(2):115–129

    Article  Google Scholar 

  • Kumar SU, Maini PK, Chiaverini L, Hearn AJ, Macdonald DW, Kaszta Z, Cushman SA (2021) Smoothing and the environmental manifold. Ecol Infor 66:101472. https://doi.org/10.1016/j.ecoinf.2021.101472

  • Lary DJ, Alavi AH, Gandomi AH, Walker AL (2016) Machine learning in geosciences and remote sensing. Geosci Front 7(1):3–10

    Article  Google Scholar 

  • Levers C, Schneider M, Prishchepov AV, Estel S, Kuemmerle T (2018) Spatial variation in determinants of agricultural land abandonment in Europe. Sci Total Environ 644:95–111

    Article  CAS  PubMed  Google Scholar 

  • Li CM, Zhang K, Dai ZX, Ma ZT, Liu XL (2020) Investigation of the impact of land-use distribution on PM(2.5)in Weifang: seasonal variations. Int J Environ Res Public Health 17(14):5135

    Article  PubMed Central  Google Scholar 

  • Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16(6):321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lidberg W, Nilsson M, Agren A (2020) Using machine learning to generate high-resolution wet area maps for planning forest management: a study in a boreal forest landscape. Ambio 49(2):475–486

    Article  PubMed  Google Scholar 

  • Liu ZL, Peng CH, Work T, Candau JN, DesRochers A, Kneeshaw D (2018) Application of machine-learning methods in forest ecology: recent progress and future challenges. Environ Rev 26(4):339–350

    Article  Google Scholar 

  • Liu C, Cao YJ, Yang C, Zhou Y, Ai MC (2020) Pattern identification and analysis for the traditional village using low altitude UAV-borne remote sensing: multifeatured geospatial data to support rural landscape investigation, documentation and management. J Cult Herit 44:185–195

    Article  Google Scholar 

  • Liu C, White M, Newell G, Griffioen P (2011) Species distribution modelling for conservation planning in Victoria of Australia. In: Chan F, Marinova D, Anderssen RS (eds) 19th International Congress on Modelling and Simulation (MODSIM2011), pp 2247–2253

  • Lorilla RS, Poirazidis K, Detsis V, Kalogirou S, Chalkias C (2020) Socio-ecological determinants of multiple ecosystem services on the Mediterranean landscapes of the Ionian Islands (Greece). Ecol Modelling. https://doi.org/10.1016/j.ecolmodel.2020.108994

    Article  Google Scholar 

  • Lu WX, Atkinson DE, Newlands NK (2017) ENSO climate risk: predicting crop yield variability and coherence using cluster-based PCA. Model Earth Syst Environ 3(4):1343–1359

    Article  Google Scholar 

  • Luan J, Zhang CL, Xu BD, Xue Y, Ren YP (2020) The predictive performances of random forest models with limited sample size and different species traits. Fish Res 227:10

    Article  Google Scholar 

  • Lucas TCD (2020) A translucent box: interpretable machine learning in ecology. Ecol Monogr 90(4):17

    Article  Google Scholar 

  • Lucas P, van der Gaag L (1991) Principles of expert systems. Addison-Wesley, Wokingham

    Google Scholar 

  • Lucash MS, Ruckert KL, Nicholas RE, Scheller RM, Smithwick EAH (2019) Complex interactions among successional trajectories and climate govern spatial resilience after severe windstorms in central Wisconsin, USA. Landsc Ecol 34(12):2897–2915

    Article  Google Scholar 

  • Ma JS, Perkins S (2003) Time-series novelty detection using one-class support vector machines. In: International joint conference on neural networks, Portland, Or 2003. IEEE international joint conference on neural networks (IJCNN). IEEE, New York, p. 1741–1745

  • Ma C, Zhang HH, Wang XF (2014) Machine learning for big data analytics in plants. Trends Plant Sci 19(12):798–808

    Article  CAS  PubMed  Google Scholar 

  • Mac Aodha O, Stathopoulos V, Terry M et al (2014) Putting the Scientist in the Loop - Accelerating Scientific Progress with Interactive Machine Learning. In: 22nd international conference on pattern recognition (ICPR), Swedish Soc Automated Image Anal, Stockholm, SWEDEN 2014. International conference on pattern recognition. Ieee Computer Soc, LOS ALAMITOS, p. 9–17

  • Magness DR, Huettmann F, Morton JM (2008) Using random forests to provide predicted species distribution maps as a metric for ecological inventory & monitoring programs. In: Smolinski TG, Milanova MG, Hassanien AE (eds), Applications of computational intelligence in biology: current trends and open problems, studies in computational intelligence. pp. 209–229

  • Mahmud M, Kaiser MS, Hussain A, Vassanelli S (2018) Applications of deep learning and reinforcement learning to biological data. IEEE Trans Neural Netw Learn Syst 29(6):2063–2079

    Article  PubMed  Google Scholar 

  • Maldonaldo AD, Ramos-Lopez D, Aguilera PA (2018) A comparison of machine-learning methods to select socioeconomic indicators in cultural landscapes. Sustainability 10(11):16

    Google Scholar 

  • Maxwell AE, Warner TA, Fang F (2018) Implementation of machine-learning classification in remote sensing: an applied review. Int J Remote Sens 39(9):2784–2817

    Article  Google Scholar 

  • McGarigal K, Stafford S, Cushman S (2000) Multivariate statistics for wildlife and ecology research. Springer, Cham

    Book  Google Scholar 

  • McGarigal K, Wan HY, Zeller KA, Timm BC, Cushman SA (2016) Multi-scale habitat selection modeling: a review and outlook. Landsc Ecol 31(6):1161–1175

    Article  Google Scholar 

  • McLaren JD, Buler JJ, Schreckengost T et al (2018) Artificial light at night confounds broad-scale habitat use by migrating birds. Ecol Lett 21(3):356–364

    Article  PubMed  Google Scholar 

  • Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. Theory and models in vegetation science. Springer, Dordrecht, pp 89–107

    Book  Google Scholar 

  • Miranda A, Carrasco J, Gonzalez M et al (2020) Evidence-based mapping of the wildland-urban interface to better identify human communities threatened by wildfires. Environ Res Lett 15(9):094069

    Article  Google Scholar 

  • Mishra M, Nayak J, Naik B, Abraham A (2020b) Deep learning in electrical utility industry: a comprehensive review of a decade of research. Eng Appl Artif Intell 96:32

    Article  Google Scholar 

  • Mishra AP, Rai ID, Pangtey D, Padalia H (2020) Vegetation characterization at community level using sentinel-2 satellite data and random forest classifier in western Himalayan Foothills, Uttarakhand. J Indian Soc Remote Sens. https://doi.org/10.1007/s12524-020-01253-x

    Article  Google Scholar 

  • Mitchell TM (1999) Machine learning and data mining. Commun ACM 42(11):30–36

    Article  Google Scholar 

  • Moriondo M, Jones GV, Bois B et al (2013) Projected shifts of wine regions in response to climate change. Clim Change 119(3–4):825–839

    Article  Google Scholar 

  • Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66(3):247–259

    Article  Google Scholar 

  • Mullet TC, Gage SH, Morton JM, Huettmann F (2016) Temporal and spatial variation of a winter soundscape in south-central Alaska. Landsc Ecol 31(5):1117–1137

    Article  Google Scholar 

  • Murphy MA, Evans JS, Storfer A (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261

  • Naderi JR, Raman B (2005) Capturing impressions of pedestrian landscapes used for healing purposes with decision tree learning. Landsc Urban Plan 73(2–3):155–166

    Article  Google Scholar 

  • Naveh Z (1994) From biodiversity to ecodiversity: a landscape-ecology approach to conservation and restoration. Restor Ecol 2(3):180–189

    Article  Google Scholar 

  • Ng ICL, Wakenshaw SYL (2017) The internet-of-things: review and research directions. Int J Res Mark 34(1):3–21

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Henry, M., Stevens, M. H. H., et al. (2016). Vegan: community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. R Package Ver, 2.3–3

  • Olden JD, Lawler JJ, Poff NL (2008) Machine learning methods without tears: a primer for ecologists. Q R Biol 83:171–193

    Article  Google Scholar 

  • Olsoy PJ, Forbey JS, Shipley LA et al (2020) Mapping foodscapes and sagebrush morphotypes with unmanned aerial systems for multiple herbivores. Landsc Ecol 35(4):921–936

    Article  Google Scholar 

  • Osborne PE, Alvares-Sanches T (2019) Quantifying how landscape composition and configuration affect urban land surface temperatures using machine learning and neutral landscapes. Comput Environ Urban Syst 76:80–90

    Article  Google Scholar 

  • Papadimitriou F (2012) Artificial Intelligence in modelling the complexity of Mediterranean landscape transformations. Comput Electron Agric 81:87–96

    Article  Google Scholar 

  • Pavri F, Farrell D (2020) Arctic landscape transitions: ice cap and terrestrial margins across Hofsjokull, Iceland. Phys Geogr. https://doi.org/10.1080/02723646.2020.1839212

    Article  Google Scholar 

  • Payntar ND, Hsiao WL, Covey RA, Grauman K (2021) Learning patterns of tourist movement and photography from geotagged photos at archaeological heritage sites in Cuzco Peru. Tour Manag 82:104165

    Article  Google Scholar 

  • Pazur R, Lieskovsky J, Burgi M et al (2020) Abandonment and recultivation of agricultural lands in Slovakia-patterns and determinants from the past to the future. Land 9(9):316

    Article  Google Scholar 

  • Pechanec V, Brus J, Sgem (2012) Expert system for landscape assesment based on GIS. In: 12th international multidisciplinary scientific geoconference, SGEM 2012, Vol. III, international multidisciplinary scientific geoconference-SGEM. pp. 369–376

  • Pechanec V (2013) Evaluation of landscape segments using decision-support systems. In: Fialova J, Kubickova H (eds) Conference on Public Recreation and Landscape Protection - with Man Hand in Hand, pp. 51

  • Perignon M, Adams J, Overeem I, Passalacqua P (2020) Dominant process zones in a mixed fluvial-tidal delta are morphologically distinct. Earth Surf Dyn 8(3):809–824

    Article  Google Scholar 

  • Portelli RA (2020) Don’t throw the baby out with the bathwater: reappreciating the dynamic relationship between humans, machines, and landscape images. Landsc Ecol 35(4):815–822

    Article  Google Scholar 

  • Pourmohammadi P, Adjeroh D, Strager MP (2019) Predicting impervious land expansion using deep deconvolutional neural networks. In: 2019 IEEE international geoscience and remote sensing symposium, IEEE international symposium on geoscience and remote sensing IGARSS. pp. 9855–9858

  • Qian YH, Xing WR, Guan XF, Yang TT, Wu HY (2020) Coupling cellular automata with area partitioning and spatiotemporal convolution for dynamic land use change simulation. Sci Total Environ 722:137738

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. https://www.r-project.org/ Accessed 15 March 2021

  • Rachmawan IEW, Tadono T, Hayashi M, Kiyoki Y (2018) Temporal difference and density-based learning method applied for deforestation detection using alos-2/Palsar-2. In: IGARSS 2018—2018 IEEE international geoscience and remote sensing symposium, IEEE international symposium on geoscience and remote sensing IGARSS. pp. 4905–4908

  • Rajaraman V (2014) JohnMcCarthy—father of artificial intelligence. Reson-J Sci Educ 19(3):198–207

    Google Scholar 

  • Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP (2012) An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogramm Remote Sens 67:93–104

    Article  Google Scholar 

  • Rodriguez-Galiano VF, Sanchez-Castillo M, Chica-Olmo M, Chica-Rivas M (2015) Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol Rev 71:804–818

    Article  Google Scholar 

  • Ross S, Friedman NR, Dudley KL, Yoshimura M, Yoshida T, Economo EP (2018) Listening to ecosystems: data-rich acoustic monitoring through landscape-scale sensor networks. Ecol Res 33(1):135–147

    Article  Google Scholar 

  • Rotolo D, Hicks D, Martin BR (2015) What is an emerging technology? Res Policy 44(10):1827–1843

    Article  Google Scholar 

  • Russell S, Norvig P (2020) Artificial intelligence: a modern approach, 4th edn. Pearson, New York

    Google Scholar 

  • Saeidi S, Mohammadzadeh M, Salmanmahiny A, Mirkarimi SH (2017) Performance evaluation of multiple methods for landscape aesthetic suitability mapping: a comparative study between multi-criteria evaluation, logistic regression and multi-layer perceptron neural network. Land Use Policy 67:1–12

    Article  Google Scholar 

  • Samarkhanov K, Abuduwaili J, Samat A, Issanova G (2019) The spatial and temporal land cover patterns of the Qazaly irrigation zone in 2003–2018: the case of Syrdarya River’s lower reache, KazakhstanKazakhstan. Sustainability 11(15):4035

    Article  Google Scholar 

  • Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3(3):210–229

    Article  Google Scholar 

  • Samuel AL (2000) Some studies in machine learning using the game of checkers (Reprinted from journal of research and development, vol 3, 1959). IBM J Res Dev 44(1–2):207–226

    Google Scholar 

  • Sejnowski TJ (2018) Deep learning revolution deep learning revolution. MIT Press, Cambridge, pp 1–342

    Book  Google Scholar 

  • Senior AW, Evans R, Jumper J et al (2020) Improved protein structure prediction using potentials from deep learning. Nature 577(7792):706

    Article  CAS  PubMed  Google Scholar 

  • Shade C, Kremer P (2019) Predicting land use changes in Philadelphia following green infrastructure policies. Land 8(2):28

    Article  Google Scholar 

  • Shafizadeh-Moghadam H, Tayyebi A, Ahmadlou M, Delavar MR, Hasanlou M (2017) Integration of genetic algorithm and multiple kernel support vector regression for modeling urban growth. Comput Environ Urban Syst 65:28–40

    Article  Google Scholar 

  • Shukla G, Garg RD, Srivastava HS, Garg PK (2018) Performance analysis of different predictive models for crop classification across an aridic to ustic area of Indian states. Geocarto Int 33(3):240–259

    Article  Google Scholar 

  • Shumack S, Hesse P, Farebrother W (2020) Deep learning for dune pattern mapping with the AW3D30 global surface model. Earth Surf Proc Land 45(11):2417–2431

    Article  Google Scholar 

  • Silva JCF, Teixeira RM, Silva FF, Brommonschenkel SH, Fontes EPB (2019) Machine learning approaches and their current application in plant molecular biology: a systematic review. Plant Sci 284:37–47

    Article  CAS  PubMed  Google Scholar 

  • Simensen T, Halvorsen R, Erikstad L (2018) Methods for landscape characterisation and mapping: a systematic review. Land Use Policy 75:557–569

    Article  Google Scholar 

  • Singh M, Tokola T, Hou ZY, Notarnicola C (2017) Remote sensing-based landscape indicators for the evaluation of threatened-bird habitats in a tropical forest. Ecol Evol 7(13):4552–4567

    Article  PubMed  PubMed Central  Google Scholar 

  • Sommerfeld A, Rammer W, Heurich M, Hilmers T, Muller J, Seidl R (2021) Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe? J Ecol 109(2):737–749

    Article  PubMed  Google Scholar 

  • Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Model 148(1):1–13

    Article  Google Scholar 

  • Storie CD, Henry CJ (2018) Deep learning neural networks for land use land cover mapping. In: IGARSS 2018—2018 IEEE international geoscience and remote sensing symposium, IEEE international symposium on geoscience and remote sensing IGARSS. pp. 3445–3448

  • Sun FY, Liu M, Wang YC, Wang H, Che Y (2020) The effects of 3D architectural patterns on the urban surface temperature at a neighborhood scale: relative contributions and marginal effects. J Clean Prod 258:120706

    Article  Google Scholar 

  • Talukdar S, Pal S (2020) Modeling flood plain wetland transformation in consequences of flow alteration in Punarbhaba river in India and Bangladesh. J Clean Prod 261:120767

    Article  Google Scholar 

  • Tao F, Qi QL, Liu A, Kusiak A (2018) Data-driven smart manufacturing. J Manuf Syst 48:157–169

    Article  Google Scholar 

  • Taverna K, Urban DL, McDonald RI (2004) Modeling landscape vegetation pattern in response to historic land-use: a hypothesis-driven approach for the North Carolina Piedmont, USA. Landsc Ecol 20:689–702

    Article  Google Scholar 

  • Thessen A (2016) Adoption of machine learning techniques in ecology and earth science. One Ecosyst 1:e8621

    Article  Google Scholar 

  • Thomson J, Regan TJ, Hollings T et al (2020) Spatial conservation action planning in heterogeneous landscapes. Biol Conserv 250:108735

    Article  Google Scholar 

  • Tian FH, Li MY, Han XL, Liu H, Mo BX (2020) A production-living-ecological space model for land-use optimisation: a case study of the core Tumen River region in China. Ecol Model 437:109310

    Article  Google Scholar 

  • Valletta JJ, Torney C, Kings M, Thornton A, Madden J (2017) Applications of machine learning in animal behaviour studies. Anim Behav 124:203–220

    Article  Google Scholar 

  • Van Beusekom AE, Gould WA, Monmany AC et al (2018) Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico. Clim Change 146(1–2):117–131

    Article  Google Scholar 

  • Vanderhaegen S, Canters F (2017) Mapping urban form and function at city block level using spatial metrics. Landsc Urban Plan 167:399–409

    Article  Google Scholar 

  • Vidal-Macua JJ, Nicolau JM, Vicente E, Moreno-de Heras M (2020) Assessing vegetation recovery in reclaimed opencast mines of the Teruel coalfield (Spain) using Landsat time series and boosted regression trees. Sci Total Environ 717:137250

    Article  CAS  PubMed  Google Scholar 

  • Wagner B, Baker PJ, Stewart SB et al (2020) Climate change drives habitat contraction of a nocturnal arboreal marsupial at its physiological limits. Ecosphere. https://doi.org/10.1002/ecs2.3262

    Article  Google Scholar 

  • Wang Q, Ren QF, Liu JF (2016) Identification and apportionment of the drivers of land use change on a regional scale: unbiased recursive partitioning-based stochastic model application. Agric Ecosyst Environ 217:99–110

    Article  Google Scholar 

  • Werneck FP, Nogueira C, Colli GR, Sites JW, Costa GC (2012) Climatic stability in the Brazilian cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J Biogeogr 39(9):1695–1706

    Article  Google Scholar 

  • Willcock S, Martinez-Lopez J, Hooftman DAP, Bagstad KJ, Balbi S, Marzo A, Prato C, Sciandrello S, Signorello G, Voigt B, Villa F, Bullock JM, Athanasiadis IN (2018) Machine learning for ecosystem services. Ecosyst Serv 33:165–174

    Article  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82

    Article  Google Scholar 

  • Wooldridge M (2020) A brief history of artificial intelligence: what it is, where we are, and where we are going. Macmillan Flatiron Books, New York

    Google Scholar 

  • Xu SP, Zhao QJ, Yin K, Zhang FF, Liu DB, Yang G (2019) Combining random forest and support vector machines for object-based rural-land-cover classification using high spatial resolution imagery. J Appl Remote Sens 13(1):1

    Article  Google Scholar 

  • Xu X, Guan MX, Jiang HL, Wang LF (2019) Dynamic simulation of land use change of the upper and middle streams of the Luan River, Northern China. Sustainability 11(18):4909

    Article  Google Scholar 

  • Yaramasu R, Bandaru V, Pnvr K (2020) Pre-season crop type mapping using deep neural networks. Comput Electron Agric 176:105664

    Article  Google Scholar 

  • Yin H, Pflugmacher D, Li A, Li ZG, Hostert P (2018) Land use and land cover change in Inner Mongolia—understanding the effects of China’s re-vegetation programs. Remote Sens Environ 204:918–930

    Article  Google Scholar 

  • Zhang XY, Du SH, Du SJ, Liu B (2020) How do land-use patterns influence residential environment quality? A multiscale geographic survey in Beijing. Remote Sens Environ 249:112014

    Article  Google Scholar 

  • Zheng MR, Tang WW, Ogundiran A, Yang JX (2020) Spatial simulation modeling of settlement distribution driven by random forest: consideration of landscape visibility. Sustainability 12(11):4748

    Article  Google Scholar 

  • Zhou L (2018) How to build a better machine learning pipeline. https://www.datanami.com/2018/09/05/how-to-build-a-better-machine-learning-pipeline/. Accessed 10 October 2021

  • Zou J, Han Y, So SS (2008) Overview of artificial neural networks. In: Livingstone DJ (ed) Artificial neural networks methods in molecular biology, vol 458. Humana Press, Totowa

    Google Scholar 

  • Zubair OA, Ji W, Weilert TE (2017) Modeling the impact of urban landscape change on urban wetlands using similarity weighted instance-based machine learning and Markov model. Sustainability 9(12):2223

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Idea for the article: M-SS, CF. Conceptualization: M-SS, SAC. Literature search: M-SS, IP-S. Data analysis: SAC, M-SS, A-IP, IP-S. The first draft of the manuscript was written by M-SS and critically revised by SAC. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mihai-Sorin Stupariu.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 950 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stupariu, MS., Cushman, S.A., Pleşoianu, AI. et al. Machine learning in landscape ecological analysis: a review of recent approaches. Landsc Ecol 37, 1227–1250 (2022). https://doi.org/10.1007/s10980-021-01366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01366-9

Keywords

Navigation