Skip to main content

Advertisement

Log in

Land-cover classification and analysis of change using machine-learning classifiers and multi-temporal remote sensing imagery

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Frequent human activity and rapid urbanization have led to an assortment of environmental issues. Monitoring land-cover change is critical to efficient environmental management and urban planning. The current study had two objectives. The first was to compare pixel-based random forest (RF) and decision tree (DT) classifier methods and a support vector machine (SVM) algorithm both in pixel-based and object-based approaches for classification of land-cover in a heterogeneous landscape for 2010. The second was to examine spatio-temporal land-cover change over the last two decades (1990–2010) using Landsat data. This study found that the object-based SVM classifier is the most accurate with an overall classification accuracy of 93.54% and a kappa value of 0.88. A post-classification change detection algorithm was used to determine the trend of change between land-cover classes. The most significant change from 1990 to 2010 was caused by the expansion of built-up areas. In addition to the net changes, the rate of annual change for each phenomenon was calculated to obtain a better understanding of the process of change. Between 1990 and 2010, an average of 4.53% of lands turned to the built-up annually and there was an annual decrease of about 0.81% in natural land. If the current trend of change continues, regardless of the actions of sustainable development, drastic declines in natural areas will ensue. The results of this study can be a valuable baseline for land-cover managers in the region to better understand the current situation and adopt appropriate strategies for management of land-cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam E, Mutanga O, Abdel-Rahman EM, Ismail R (2014) Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression. Int J Remote Sens 35:693–714. doi:10.1080/01431161.2013.870676

    Article  Google Scholar 

  • Angell DL, McClaran MP (2001) Long-term influences of livestock management and a non-native grass on grass dynamics in the desert grassland. J Arid Environ 49:507–520. doi:10.1006/jare.2001.0811

    Article  Google Scholar 

  • Bajocco S, Angelis A, Perini L, Ferrara A, Salvati L (2012) The impact of land use/land cover changes on land degradation dynamics. A Mediterranean Case Study Environmental Management 49:980–989. doi:10.1007/s00267-012-9831-8

    Google Scholar 

  • Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information ISPRS. Journal of Photogrammetry and Remote Sensing 58:239–258. doi:10.1016/j.isprsjprs.2003.10.002

    Article  Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing ISPRS. Journal of Photogrammetry and Remote Sensing 65:2–16. doi:10.1016/j.isprsjprs.2009.06.004

    Article  Google Scholar 

  • Breiman L (2001) Random Forests. Machine Learning 45:5–32. doi:10.1023/A:1010933404324

  • Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and Regression Trees. Taylor & Francis

  • Brown de Colstoun EC, Walthall, CL (2006) Improving global scale land cover classifications with multidirectional POLDER data and a decision tree classifier. Remote Sens Environ 100(4):474–485

  • CBD (2010) Fourth national report under the convention on biological diversity (CBD)—Germany. http://www.cbd.int/reports/search/.

  • Chen L, Wang J, Fu B, Qiu Y (2001) Land-use change in a small catchment of northern loess plateau. China Agriculture, Ecosystems & Environment 86:163–172

    Article  Google Scholar 

  • d’Amoura CB et al (2016) Future urban land expansion and implications for global croplands. PNAS. doi:10.1073/pnas.1606036114

    Google Scholar 

  • DeFries R, Hansen AJ, Newton AC, Hansen M (2005) Increasing solation of protected areas in tropical forests over the past twenty years. Ecol Appl 15(1):19–26

  • Deng Y, Chen X, Chuvieco E, Warner T, Wilson JP (2007) Multi-scale linkages between topographic attributes and vegetation indices in a mountainous landscape. Remote Sens Environ 111:122–134

    Article  Google Scholar 

  • Dingle Robertson L, King DJ (2011) Comparison of pixel- and object-based classification in land cover change mapping. Int J Remote Sens 32:1505–1529. doi:10.1080/01431160903571791

    Article  Google Scholar 

  • Duro DC, Franklin SE, Dubé MG (2012b) Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. Int J Remote Sens 33:4502–4526. doi:10.1080/01431161.2011.649864

    Article  Google Scholar 

  • Duro DC, Franklin SE, Dubé MG (2012a) A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens Environ 118:259–272. doi:10.1016/j.rse.2011.11.020

    Article  Google Scholar 

  • EU-COM (2009) Composite report on the conservation status of habitat types and species as required under article 17 of habitats directive. Report from the Commission to the Council and the European Parliament, Brussles

  • Ewert F, Rounsevell M, Reginster I, Metzger M, Leemans R (2006) Technology development and climate change as drivers of future agricultural land use. In: Brouwer F, McCarl BA (Eds.), Agriculture and Climate Beyond 2015 Environ-ment and Policy 46, pp. 33–51.

  • FAO (2011) State of the World’s forests. Forestry Department, Rome

    Google Scholar 

  • Foley JA et al (2005) Global Consequences of Land Use Science 309:570–574. doi:10.1126/science.1111772

    Google Scholar 

  • Freitas SR, Hawbaker TJ, Metzger JP (2010) Effects of roads topography, and land use on forest cover dynamics in the brazilian atlantic forest. For Ecol Manage 259:410–417

  • Fu BJ et al (2006) Temporal change in land use and its relationship to slope degree and soil type in a small catchment on the loess plateau of China. Catena 65:41–48

    Article  Google Scholar 

  • Fung T, So LLH, Chen Y, Shi P, Wang J (2008) Analysis of green space in Chongqing and Nanjing, cities of China with ASTER images using object oriented image classification and landscape metric analysis international. Journal of Remote Sensing 29:7159–7180. doi:10.1080/01431160802199868

    Article  Google Scholar 

  • GBO3 (2010) Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 3—Executive Summary, Montreal

  • Geomatica (2013) Atmospheric correction (with ATCOR)

  • Ghimire B, Rogan J, Miller J (2010) Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sensing Letters 1:45–54. doi:10.1080/01431160903252327

    Article  Google Scholar 

  • Gislason PO, Benediktsson JA, Sveinsson JR (2006) Random forests for land cover classification. Pattern Recogn Lett 27:294–300. doi:10.1016/j.patrec.2005.08.011

    Article  Google Scholar 

  • Haines-Young R (2009) Land use and biodiversity relationships. Land Use Policy 26(1):178–186

  • Horskins K, Mather PB, Wilson JC (2006) Corridors and connectivity: when use and function do not equate. Landsc Ecol 21(5):641–655

  • Hua WJ, Chen HS (2013) Impacts of regional-scale land use/land cover change on diurnal temperature range. Adv Clim Chang Res 4:166–172. doi:10.3724/SP.J.1248.2013.166

    Article  Google Scholar 

  • Johnson BA (2013) High-resolution urban land-cover classification using a competitive multi-scale object-based approach. Remote Sensing Letters 4(2):131–140

  • Kampouraki M, Wood GA, Brewer TR (2008) Opportunities and limitations of object based image analysis for detecting urban impervious and vegetated surfaces using true-colour aerial photography. In: Blaschke T, Lang S, Hay G (eds) Object-based image analysis. Lecture notes in Geoinformation and cartography. Springer, Berlin Heidelberg, pp 555–569. doi:10.1007/978-3-540-77058-9_30

    Google Scholar 

  • Kang JH, Lee SW, Cho KH, Ki SJ, Cha SM, Kim JH (2010) Linking land-use type and stream water quality using spatial data of fecal indicator bacteria and heavy metals in the Yeongsan river basin. Water Res 44:4143–4157. doi:10.1016/j.watres.2010.05.009

    Article  Google Scholar 

  • Keshtkar H, Voigt W (2016a) A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models model. Earth Syst Environ 2:1–13. doi:10.1007/s40808-015-0068-4

    Article  Google Scholar 

  • Keshtkar H, Voigt W (2016b) Potential impacts of climate and landscape fragmentation changes on plant distributions: coupling multi-temporal satellite imagery with GIS-based cellular automata model. Ecological Informatics 32:145–155. doi:10.1016/j.ecoinf.2016.02.002

    Article  Google Scholar 

  • Keshtkar HR, Azarnivand H, Arzani H, Alavipanah SK, Mellati F (2013) Land cover classification using IRS-1D data and a decision tree classifier. Desert 17:137–146

    Google Scholar 

  • Kuemmerle T, Chaskovskyy O, Knorn J, Radeloff VC, Kruhlov I, Keeton WS, Hostert P (2009) Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sens Environ 113:1194–1207. doi:10.1016/j.rse.2009.02.006

    Article  Google Scholar 

  • Lambin EF, Geist HJ (2003) Regional differences in tropical deforestation. Environment: Science and Policy for Sustainable Development 45:22–36. doi:10.1080/00139157.2003.10544695

    Article  Google Scholar 

  • Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity Proceedings of the National Academy of Sciences 108:3465–3472 doi:10.1073/pnas.1100480108

  • Lawrence PJ et al (2012) Simulating the biogeochemical and Biogeophysical impacts of transient land cover change and wood harvest in the community climate system model (CCSM4) from 1850 to 2100. J Clim 25:3071–3095. doi:10.1175/JCLI-D-11-00256.1

    Article  Google Scholar 

  • Le Houérou HN (1996) Climate change, drought and desertification. J Arid Environ 34:133–185. doi:10.1006/jare.1996.0099

    Article  Google Scholar 

  • Li S, Gu S, Tan X, Zhang Q (2009) Water quality in the upper Han River basin, China: the impacts of land use/land cover in riparian buffer zone. J Hazard Mater 165:317–324. doi:10.1016/j.jhazmat.2008.09.123

    Article  Google Scholar 

  • Licciardi G et al (2009) Decision fusion for the classification of hyperspectral data: outcome of the 2008 GRS-S data fusion contest geoscience and remote sensing. IEEE Transactions on 47:3857–3865. doi:10.1109/TGRS.2009.2029340

    Google Scholar 

  • Lind B, Stein S, Kärcher A, Klein M (2009) Where have all the flowers gone? Grünland im Umbruch. German Federal Agency for Nature Conservation (BfN), Bonn

    Google Scholar 

  • Liu D, Xia F (2010) Assessing object-based classification: advantages and limitations. Remote Sensing Letters 1:187–194. doi:10.1080/01431161003743173

    Article  Google Scholar 

  • Loeb C (2006) Planning reunification: the planning history of the fall of the Berlin Wall. Plan Perspect 21(1):67–87

  • Long HL, Wu XQ, Wang WJ, Dong GH (2008) Analysis of urban-rural land-use change during 1995-2006 and its policy dimensional driving forces in Chongqing. China Sensors 8:681–699

    Article  Google Scholar 

  • Loveland TR, Belward AS (1997) The IGBP-DIS global 1 km land cover data set, DISCover: first results. Int J Remote Sens 18:3289–3295. doi:10.1080/014311697217099

    Article  Google Scholar 

  • Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28:823–870. doi:10.1080/01431160600746456

    Article  Google Scholar 

  • Manandhar R, Odeh I, Ancev T (2009) Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sens 1:330

    Article  Google Scholar 

  • Möller M, Lymburner L, Volk M (2007) The comparison index: a tool for assessing the accuracy of image segmentation. Int J Appl Earth Obs Geoinf 9:311–321. doi:10.1016/j.jag.2006.10.002

    Article  Google Scholar 

  • Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng Q (2011) Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens Environ 115:1145–1161. doi:10.1016/j.rse.2010.12.017

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Methuen & Co. Ltd., New York, NY

    Google Scholar 

  • Otukei JR, Blaschke T (2010) Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int J Appl Earth Obs Geoinf 12:S27–S31. doi:10.1016/j.jag.2009.11.002

    Article  Google Scholar 

  • Pal M, Mather PM (2005) Support vector machines for classification in remote sensing. Int J Remote Sens 26:1007–1011. doi:10.1080/01431160512331314083

    Article  Google Scholar 

  • Petropoulos GP, Vadrevu KP, Xanthopoulos G, Karantounias G, Scholze M (2010) A comparison of spectral angle mapper and artificial neural network classifiers combined with Landsat TM imagery analysis for obtaining burnt area mapping. Sensors (Basel, Switzerland) 10:1967–1985. doi:10.3390/s100301967

    Article  Google Scholar 

  • Poschlod P, Bakker JP, Kahmen S (2005) Changing land use and its impact on biodiversity. Basic and Applied Ecology 6:93–98. doi:10.1016/j.baae.2004.12.001

    Article  Google Scholar 

  • Pu R, Landry S, Yu Q (2011) Object-based urban detailed land cover classification with high spatial resolution IKONOS imagery. Int J Remote Sens 32:3285–3308. doi:10.1080/01431161003745657

    Article  Google Scholar 

  • Qian Y, Zhou W, Yan J, Li W, Han L (2014) Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens 7:153

    Article  Google Scholar 

  • Quinlan JR (1987) Simplifying decision trees. Int J Man-Mach Stud 27:221–234. doi:10.1016/s0020-7373(87)80053-6

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R foundation forstatistical computing. Vienna, Austria. http://www.R-project.org/

  • Riecken U, Finck P, Raths U, Schröder E, Ssymank A (2008) Die Gefährdung der Biotoptypen in Deutschland Aktueller Stand nach Vorlage der 2 Fassung der Roten Liste Natursch. Biol Vielf 2008:189–194

    Google Scholar 

  • Robinson DJ, Redding NJ, Crisp DJ (2002) Implementation of a fast algorithm for segmenting SAR imagery. Defense Science and Technology Organization, Australia

    Google Scholar 

  • Rodriguez-Galiano VF, Chica-Rivas M (2012) Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and digital terrain models. International Journal of Digital Earth 7:492–509. doi:10.1080/17538947.2012.748848

    Article  Google Scholar 

  • Settel A (1946) A year of Potsdam: the German economy since the surrender. Lithographed by the Adjutant General. OMGUS, USA, p 217

  • Shrestha DP, Zinck JA (2001) Land use classification in mountainous areas: integration of image processing, digital elevation data and field knowledge (application to Nepal). Int J Appl Earth Obs Geoinf 3:78–85

    Article  Google Scholar 

  • Siehoff S, Lennartz G, Heilburg IC, Roß-Nickoll M, Ratte HT, Preuss TG (2011) Process-based modeling of grassland dynamics built on ecological indicator values for land use. Ecol Model 222:3854–3868. doi:10.1016/j.ecolmodel.2011.10.003

    Article  Google Scholar 

  • Stuckens J, Coppin PR, Bauer ME (2000) Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sens Environ 71:282–296. doi:10.1016/S0034-4257(99)00083-8

    Article  Google Scholar 

  • Szantoi Z, Escobedo F, Abd-Elrahman A, Smith S, Pearlstine L (2013) Analyzing fine-scale wetland composition using high resolution imagery and texture features. Int J Appl Earth Obs 23:204–212

    Article  Google Scholar 

  • Szantoi Z et al (2015) Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features. Environ Monit Assess 187:262. doi:10.1007/s10661-015-4426-5

    Article  Google Scholar 

  • Therneau T, Atkinson E (1997) An introduction to recursive partitioning using the RPART routines. Mayo Clinic, Rochester, MN

    Google Scholar 

  • Tian F, Yang L, Lv F, Zhou P (2009) Predicting liquid chromatographic retention times of peptides from the Drosophila melanogaster proteome by machine learning approaches. Anal Chim Acta 644:10–16. doi:10.1016/j.aca.2009.04.010

    Article  Google Scholar 

  • Tölle A (2010) Urban identity policies in berlin: from critical reconstruction to reconstructing the wall. Cities 27:348–357

    Article  Google Scholar 

  • Van Coillie FMB, Verbeke LPC, De Wulf RR (2007) Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in Flanders. Belgium Remote Sensing of Environment 110:476–487. doi:10.1016/j.rse.2007.03.020

    Article  Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory. Springer

  • Waske B, van der Linden S, Oldenburg C, Jakimow B, Rabe A, Hostert P (2012) imageRF – a user-oriented implementation for remote sensing image analysis with random forests. Environ Model Softw 35:192–193. doi:10.1016/j.envsoft.2012.01.014

    Article  Google Scholar 

  • Wen L et al (2013) Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan plateau. China PLos ONE 8:e58432. doi:10.1371/journal.pone.0058432

    Article  Google Scholar 

  • Wu X, Shen Z, Liu R, Ding X (2008) Land use/cover dynamics in response to changes in environmental and socio-political forces in the upper reaches of the Yangtze River. China Sensors 8:8104–8122. doi:10.3390/s8128104

    Article  Google Scholar 

  • Yu Q, Gong P, Clinton N, Biging G, Kelly M, Schirokauer D (2006) Objectbased detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering and Remote Sensing 72(7):799–811

  • Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME (2005) Land cover classification and change analysis of the twin cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sens Environ 98:317–328. doi:10.1016/j.rse.2005.08.006

    Article  Google Scholar 

  • Zhao Y et al (2014) Effects of topography on status and changes in land-cover patterns. Chongqing City, China Landscape Ecol Eng 10:125–135. doi:10.1007/s11355-011-0155-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Thüringer Landesanstalt für Umwelt und Geologie, Jena, Germany, for providing digital data and also the US Geological Survey (USGS) and European Space Agency (ESA) for preparing free archive of Landsat Earth-observing satellites images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Keshtkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshtkar, H., Voigt, W. & Alizadeh, E. Land-cover classification and analysis of change using machine-learning classifiers and multi-temporal remote sensing imagery. Arab J Geosci 10, 154 (2017). https://doi.org/10.1007/s12517-017-2899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-2899-y

Keywords

Navigation