Skip to main content

Advertisement

Log in

How to assess the temporal dynamics of landscape connectivity in ever-changing landscapes: a literature review

  • Review Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Landscape connectivity plays a key role in determining the persistence of species inhabiting fragmented habitat patches. In dynamic landscapes, most studies measure connectivity at multiple time steps, but pay less attention to explicitly quantifying its temporal dynamics to gain insights into its role in biodiversity patterns, thereby enabling more effective operational outcomes.

Objectives

This article aimed at making an overview of the existing methods for the assessment of the temporal dynamics of connectivity. By analysing their differences and possible applications, we aimed to highlight knowledge gap and future research directions.

Methods

We conducted a systematic review of literature dealing with the assessment of the temporal dynamics of connectivity and obtained 32 studies.

Results

We presented two main approaches based on graph theory and compared them from conceptual and operational perspectives. The first widely used approach, accounting only for the spatial dispersal of organisms, quantifies temporal changes in spatial connectivity. Based on two or multiple time steps in the time series, this approach enables assessment of the sense and magnitude of the temporal changes in spatial connectivity. The second recently developed approach quantifies spatio-temporal connectivity, thus accounting for both spatial and temporal dispersal. So far, this holistic assessment of spatio-temporal connectivity only covers two time steps.

Conclusion

Existing methods for the assessment of the temporal dynamics of connectivity provide indicators to advance our understanding of biodiversity patterns, and to be able to implement measures to conserve and restore connectivity. We propose future directions to develop these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Hylander and Ehrlén (2013)

Fig. 2

Martensen et al. (2017)

Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data analysed during this study are included in this published.

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64:233–247

    Article  Google Scholar 

  • Allen TFH, Starr TB (1988) Hierarchy: perspectives for ecological complexity. University of Chicago Press, Chicago

    Google Scholar 

  • Auffret AG, Rico Y, Bullock JM, Hooftman DAP, Pakeman RJ, Soons MB, Suárez-Esteban A, Traveset A, Wagner HH, Cousins SAO (2017) Plant functional connectivity—integrating landscape structure and effective dispersal. J Ecol.https://doi.org/10.1111/1365-2745.12742

  • Baudry J, Burel F, Aviron S, Martin M, Ouin A, Pain G, Thenail C (2003) Temporal variability of connectivity in agricultural landscapes: do farming activities help? Landsc Ecol 18:303–314

    Article  Google Scholar 

  • Biedermann R (2004) Modelling the spatial dynamics and persistence of the leaf beetle Gonioctena olivacea in dynamic habitats. Oikos 107:645–653

    Article  Google Scholar 

  • Bishop-Taylor R, Tulbure MG, Broich M (2015) Surface water network structure, landscape resistance to movement and flooding vital for maintaining ecological connectivity across Australia’s largest river basin. Landsc Ecol 30:2045–2065

    Article  Google Scholar 

  • Bishop-Taylor R, Tulbure MG, Broich M (2018a) Impact of hydroclimatic variability on regional-scale landscape connectivity across a dynamic dryland region. Ecol Indic 94:142–150

    Article  Google Scholar 

  • Bodin Ö, Saura S (2010) Ranking individual habitat patches as connectivity providers: integrating network analysis and patch removal experiments. Ecol Model 221:2393–2405

    Article  Google Scholar 

  • Bommarco R, Lindborg R, Marini L, Öckinger E (2014) Extinction debt for plants and flower-visiting insects in landscapes with contrasting land use history. Divers Distrib 20:591–599

    Article  Google Scholar 

  • Bull JW, Suttle KB, Singh NJ, Milner-Gulland E (2013) Conservation when nothing stands still: moving targets and biodiversity offsets. Front Ecol Environ 11:203–210

    Article  Google Scholar 

  • Clauzel C, Bannwarth C, Foltête J-C (2015) Integrating regional-scale connectivity in habitat restoration: an application for amphibian conservation in eastern France. J Nat Conserv 23:98–107

    Article  Google Scholar 

  • Crooks KR, Sanjayan M (2006) Connectivity conservation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dale MRT (2017) Spatio-temporal graphs. Applying graph theory in ecological research, 1st edn. Cambridge University Press, Cambridge, pp 222–251

    Chapter  Google Scholar 

  • de Santana CN, Klecka J, Palamara GM, Melián CJ (2015) Metacommunity in dynamic landscapes. bioRxiv. https://doi.org/10.1101/021220

    Article  Google Scholar 

  • Diamond JM (1972) Biogeographic kinetics: estimation of relaxation times for avifaunas of southwest pacific islands. Proc Natl Acad Sci USA 69:3199–3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin J-L(2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  PubMed  Google Scholar 

  • Fletcher R, Fortin M-J (2018) Spatial ecology and conservation modeling: applications with R. Springer, Cham

    Book  Google Scholar 

  • Fletcher RJ, Didham RK, Banks-Leite C, Barlow J, Ewers RM, Rosindell J, Holt RD, Gonzalez A, Pardini R, Damschen EI, Melo FPL, Ries L, Prevedello JA, Tscharntke T, Laurance WF, Lovejoy T, Haddad NM (2018) Is habitat fragmentation good for biodiversity? Biol Conserv 226:9–15

    Article  Google Scholar 

  • Foltête J-C (2018) A parcel-based graph to match connectivity analysis with field action in agricultural landscapes: is node removal a reliable method? Landsc Urban Plan 178:32–42

    Article  Google Scholar 

  • Foltête J-C, Girardet X, Clauzel C (2014) A methodological framework for the use of landscape graphs in land-use planning. Landsc Urban Plan 124:140–150

    Article  Google Scholar 

  • Foltête J-C, Savary P, Clauzel C, Bourgeois M, Girardet X, Saharoui Y, Vuidel G, Garnier S(2020) Coupling landscape graph modeling and biological data: a review. Landsc Ecol. https://doi.org/10.1007/s10980-020-00998-7

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144:44–55

    Article  Google Scholar 

  • García-Feced C, Saura S, Elena-Rosselló R (2011) Improving landscape connectivity in forest districts: a two-stage process for prioritizing agricultural patches for reforestation. For Ecol Manag 261:154–161

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song D-X, Townshend JR(2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052

  • Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162

    Article  Google Scholar 

  • Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77

    PubMed  Google Scholar 

  • Hernández A, Miranda M, Arellano EC et al (2015) Landscape dynamics and their effect on the functional connectivity of a Mediterranean landscape in Chile. Ecol Indic 48:198–206

  • Hodgson JA, Moilanen A, Thomas CD (2009) Metapopulation responses to patch connectivity and quality are masked by successional habitat dynamics. Ecology 90:1608–1619

    Article  PubMed  Google Scholar 

  • Horváth Z, Ptacnik R, Vad CF, Chase JM (2019) Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecol Lett 22:1019–1027

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang J-L, Andrello M, Martensen AC, Saura S, Liu D-F, He J-H, Fortin M-J(2020) Importance of spatio–temporal connectivity to maintain species experiencing range shifts. Ecography 43:591–603

    Article  Google Scholar 

  • Huber S, Huber B, Stahl S, Schmid C, Reisch C(2017) Species diversity of remnant calcareous grasslands in south eastern Germany depends on litter cover and landscape structure. Acta Oecol 83:48–55

    Article  Google Scholar 

  • Hylander K, Ehrlén J (2013) The mechanisms causing extinction debts. Trends Ecol Evol 28:341–346

    Article  PubMed  Google Scholar 

  • Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25:153–160

    Article  PubMed  Google Scholar 

  • Keitt T, Urban DL, Milne BT (1997) Detecting critical scales in fragmented landscapes. Conserv Ecol. https://doi.org/10.5751/ES-00015-010104

    Article  Google Scholar 

  • Keymer JE, Marquet PA, Velasco-Hernández JX, Levin SA (2000) Extinction thresholds and metapopulation persistence in dynamic landscapes. Am Nat 156:478–494

    Article  PubMed  Google Scholar 

  • Kool JT, Moilanen A, Treml EA (2013) Population connectivity: recent advances and new perspectives. Landsc Ecol 28:165–185

    Article  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Ockinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I(2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Article  PubMed  Google Scholar 

  • Laita A, Kotiaho JS, Mönkkönen M (2011) Graph-theoretic connectivity measures: what do they tell us about connectivity? Landsc Ecol 26:951–967

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A(2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

    Article  Google Scholar 

  • Lira PK, de Souza LM, Metzger JP (2019) Temporal lag in ecological responses to landscape change: where are we now? Curr Landsc Ecol Rep 4:70–82

    Article  Google Scholar 

  • Liu S, Dong Y, Deng L, Liu Q, Zhao H, Dong S(2014) Forest fragmentation and landscape connectivity change associated with road network extension and city expansion: a case study in the Lancang River Valley. Ecol Indic 36:160–168

    Article  Google Scholar 

  • Liu S, Yin Y, Liu X et al (2017) Ecosystem services and landscape change associated with plantation expansion in a tropical rainforest region of Southwest China. Ecol Model 353:129–138

  • Martensen AC, Saura S, Fortin M-J (2017) Spatio-temporal connectivity: assessing the amount of reachable habitat in dynamic landscapes. Methods Ecol Evol 8:1253–1264

    Article  Google Scholar 

  • Matias MG, Mouquet N, Chase JM (2013) Dispersal stochasticity mediates species richness in source–sink metacommunities. Oikos 122:395–402

    Article  Google Scholar 

  • Matisziw TC, Murray AT (2009) Connectivity change in habitat networks. Landsc Ecol 24:89–100

    Article  Google Scholar 

  • Matlack GR, Monde J (2004) Consequences of low mobility in spatially and temporally heterogeneous ecosystems. J Ecol 92:1025–1035

    Article  Google Scholar 

  • Mazaris AD, Papanikolaou AD, Barbet-Massin M, Kallimanis AS, Jiguet F, Schmeller DS, Pantis JD(2013) Evaluating the Connectivity of a Protected Areas’ Network under the Prism of Global Change: The Efficiency of the European Natura 2000 Network for Four Birds of Prey.PLOS ONE 8:e59640. https://doi.org/10.1371/journal.pone.0059640

  • McIntyre NE, Collins SD, Heintzman LJ, Starr SM, van Gestel N(2018) The challenge of assaying landscape connectivity in a changing world: a 27-year case study in the southern Great Plains (USA) playa network. Ecol Indic 91:607–616

    Article  Google Scholar 

  • McRae BH (2006) Isolation by resistance. Evolution 60:1551–2156

    PubMed  Google Scholar 

  • Metzger JP, Martensen AC, Dixo M, Bernacci LC, Ribeiro MC, Teixeira AMG, Pardini R(2009) Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol Conserv 142:1166–1177

    Article  Google Scholar 

  • Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22:297–307

    Article  PubMed  Google Scholar 

  • Mui AB, Caverhill B, Johnson B, Fortin M-J, He Y(2017) Using multiple metrics to estimate seasonal landscape connectivity for Blanding’s turtles (Emydoidea blandingii) in a fragmented landscape. Landsc Ecol 32:531–546

    Article  Google Scholar 

  • Naaf T, Kolk J (2015) Colonization credit of post-agricultural forest patches in NE Germany remains 130–230years after reforestation. Biol Conserv 182:155–216

    Article  Google Scholar 

  • O’Neill RV, Deangelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Opdam P (1991) Metapopulation theory and habitat fragmentation: a review of holarctic breeding bird studies. Landsc Ecol 5:93–106

    Article  Google Scholar 

  • Ovaskainen O, Hanski I (2002) Transient dynamics in metapopulation response to perturbation. Theor Popul Biol 61:285–295

    Article  PubMed  Google Scholar 

  • Perry GLW, Lee F (2019) How does temporal variation in habitat connectivity influence metapopulation dynamics? Oikos 128:1277–1286

    Article  Google Scholar 

  • Petit S, Burel F (1998) Effects of landscape dynamics on the metapopulation of a ground beetle (Coleoptera, Carabidae) in a hedgerow network. Agric Ecosyst Environ 69:243–252

    Article  Google Scholar 

  • Raatikainen KJ, Oldén A, Käyhkö N, Mönkkönen M, Halme P(2018) Contemporary spatial and environmental factors determine vascular plant species richness on highly fragmented meadows in Central Finland. Landsc Ecol 33:2169–2187

    Article  Google Scholar 

  • Rapinel S, Mony C, Lecoq L, Clément B, Thomas A, Hubert-Moy L(2019) Evaluation of Sentinel-2 time-series for mapping floodplain grassland plant communities. Remote Sens Environ 223:115–129

    Article  Google Scholar 

  • Rappaport DI, Tambosi LR, Metzger JP (2015) A landscape triage approach: combining spatial and temporal dynamics to prioritize restoration and conservation. J Appl Ecol 52:590–601

    Article  Google Scholar 

  • Rayfield B (2009) Maintaining Habitat Connectivity for Conservation. University of Toronto

  • Rayfield B, James PMA, Fall A, Fortin M-J (2008) Comparing static versus dynamic protected areas in the Québec boreal forest. Biol Conserv 141:438–449

    Article  Google Scholar 

  • Rayfield B, Fortin M-J, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92:847–858

    Article  PubMed  Google Scholar 

  • Reigada C, Schreiber SJ, Altermatt F, Holyoak M (2015) Metapopulation dynamics on ephemeral patches. Am Nat 185:183–195

    Article  PubMed  Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    Article  CAS  PubMed  Google Scholar 

  • Rothley KD, Rae C (2005) Working backwards to move forwards: graph-based connectivity metrics for reserve network selection. Environ Model Assess 10:107–113

    Article  Google Scholar 

  • Rubio L, Bodin Ö, Brotons L, Saura S (2015) Connectivity conservation priorities for individual patches evaluated in the present landscape: how durable and effective are they in the long term? Ecography 38:782–879

    Article  Google Scholar 

  • Ruremonde RHAC, Kalkhoven JTR (1991) Effects of woodlot isolation on the dispersion of plants with fleshy fruits. J Veg Sci 2:377–384

    Article  Google Scholar 

  • Sahraoui Y, Foltête J-C, Clauzel C (2017) A multi-species approach for assessing the impact of land-cover changes on landscape connectivity. Landsc Ecol 32:1819–1835

    Article  Google Scholar 

  • Saura S, Estreguil C, Mouton C, Rodríguez-Freire M (2011) Network analysis to assess landscape connectivity trends: application to European forests (1990–2000). Ecol Indic 11:407–416

    Article  Google Scholar 

  • Saura S, Bertzky B, Bastin L, Battistella L, Mandrici A, Dubois G(2019) Global trends in protected area connectivity from 2010 to 2018. Biol Conserv 238:108183

  • Sprugel DG (1991) Disturbance, equilibrium, and environmental variability: what is ‘natural’ vegetation in a changing environment? Biol Conserv 58:1–18

    Article  Google Scholar 

  • Taylor PD, Fahrig L, Heinen K et al (2006) Landscape connectivity: a return to the basics. Connectivity conservation: maintaining connections for nature. Cambridge University Press, Cambridge, pp 29–43

    Chapter  Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Tulbure MG, Kininmonth S, Broich M (2014) Spatiotemporal dynamics of surface water networks across a global biodiversity hotspot—implications for conservation. Environ Res Lett 9:114012

    Article  Google Scholar 

  • Turner MG, Romme WH, Gardner RH, O’Neill RV, Kratz TK(1993) A revised concept of landscape equilibrium: disturbance and stability on scaled landscapes. Landsc Ecol 8:213–227

    Article  Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218

    Article  Google Scholar 

  • Wilson DS (1992) Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73:1984–2000

    Article  Google Scholar 

  • Wimberly MC (2006) Species dynamics in disturbed landscapes: when does a shifting habitat mosaic enhance connectivity? Landsc Ecol 21:35–46

    Article  Google Scholar 

  • Zeigler SL, Fagan WF (2014) Transient windows for connectivity in a changing world. Mov Ecol 2:1–10

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Fondation de France (BISCO project). We thank Daphné Goodfellow for the English editing.

Funding

This work was funded by the Fondation de France (BISCO project).

Author information

Authors and Affiliations

Authors

Contributions

Conceived the ideas and designed methodology—LU, AA, CM, AE. Analysed and interpreted the data—LU. Prepared all figures, table, appendix—LU. Led the writing of the manuscript—LU. Contributed critically to drafting and revising the manuscript—LU, AA, CM, JCF, AE. Final approval for publication—LU, AA, CM, JCF, AE.

Corresponding author

Correspondence to Léa Uroy.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Consent for publication

All authors gave their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uroy, L., Alignier, A., Mony, C. et al. How to assess the temporal dynamics of landscape connectivity in ever-changing landscapes: a literature review. Landscape Ecol 36, 2487–2504 (2021). https://doi.org/10.1007/s10980-021-01277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01277-9

Keywords

Navigation