Skip to main content

Advertisement

Log in

Multi-scale prediction of landscape resistance for tiger dispersal in central India

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Connectivity models for animal movement frequently use resistance surfaces, but rarely incorporate actual movement data and multiple scale drivers of landscape resistance.

Objectives

Using GPS data, we developed a multi-scale model of landscape resistance for tiger (Panthera tigris) dispersal in central India and evaluated the performance, interpretation and predictions against single scale models.

Methods

Six dispersing tiger paths were subjected to a path level analysis with conditional logistic regression to parameterize a resistance surface. We evaluated for 21 scales of available habitat and selected the best scale for each variable. We derived a scale-optimized multivariate path selection function and predicted landscape resistance across the landscape.

Results

The tigers preferred to move along areas with forest cover at relatively high elevations along the ridges with rugged topography at broad scale, while avoiding areas with agriculture-village matrix at fine scale. We found that the scale that was most supported by Akaike’s information criterion was not always the scale that maximized the magnitude (effect size) of the relationship. Further, the multi-scale optimized model differed substantially from the single scale models in terms of variable importance, magnitude of coefficients and predictions of connectivity.

Conclusions

Our results demonstrate that the variables in landscape resistance models produce markedly different predictions of population connectivity depending on the scales of analyses and interpretation. Thus, scale optimization in parameterization is critical for appropriate inferences and sound management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blaszczynski JS (1997) Landform characterization with geographic information systems. Photogramm Eng Remote Sens 63(2):183–191

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23(4):843–856

    Article  PubMed  Google Scholar 

  • Compton BW, McGarigal K, Cushman SA, Gamble LR (2007) A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv Biol 21(3):788–799

    Article  PubMed  Google Scholar 

  • Compton BW, Rhymer JM, McCollough M (2002) Habitat selection by wood turtles (Clemmys insculpta): an application of paired logistic regression. Ecology 83(3):833–843

    Article  Google Scholar 

  • Coulon A, Morellet N, Goulard M, Cargnelutti B, Angibault JM, Hewison AM (2008) Inferring the effects of landscape structure on roe deer (Capreolus capreolus) movements using a step selection function. Landscape Ecol 23(5):603–614

    Article  Google Scholar 

  • Craiu RV, Duchesne T, Fortin D (2008) Inference methods for the conditional logistic regression model with longitudinal data. Biom J 50(1):109

    Article  Google Scholar 

  • Cushman SA, Lewis JS (2010) Movement behavior explains genetic differentiation in American black bears. Landscape Ecol 25(10):1613–1625

    Article  Google Scholar 

  • Cushman SA, Chase M, Griffin C (2005) Elephants in space and time. Oikos 109(2):331–341

    Article  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168(4):486–499

    Article  PubMed  Google Scholar 

  • Cushman SA, Chase M, Griffin C (2010) Mapping landscape resistance to identify corridors and barriers for elephant movement in southern Africa. In: Cushman SA, Heutmann S (eds) Spatial complexity, informatics, and wildlife conservation. Springer, Tokyo, Berlin, Heidelberg, New York, pp 349–367

    Chapter  Google Scholar 

  • Cushman SA, Landguth EL, Flather CH (2012) Evaluating the sufficiency of protected lands for maintaining wildlife population connectivity in the US northern Rocky Mountains. Divers Distrib 18(9):873–884

    Article  Google Scholar 

  • Cushman SA, Lewis JS, Landguth EL (2014) Why did the bear cross the road? Comparing the performance of multiple resistance surfaces and connectivity modeling methods. Diversity 6(4):844–854

    Article  Google Scholar 

  • Elliot NB, Cushman SA, Macdonald DW, Loverige AJ (2014) The devil is in the dispersers: predictions of landscape connectivity change with demography. J Appl Ecol 51(5):1169–1178

    Article  Google Scholar 

  • ESRI (2010) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Evans JS, Oakleaf J, Cushman SA, Theobald D (2014). An ArcGIS toolbox for surface gradient and geomorphometric modeling, version 2.0-0. http://evansmurphy.wix.com/evansspatial. Accessed 2 Dec 2014

  • Fernandes A (2012) How coal mining is trashing tigerland. Greenpeace, Bengaluru, p 115. http://www.greenpeace.org/india/Global/india/report/How-Coal-mining-is-Trashing-Tigerland.pdf. Accessed 4 July 2015

  • Forest Survey of India (2011) India state of forest report 2011. Forest Survey of India, Ministry of Environment, Forest & Climate Change, Government of India, Dehradun

  • Fortin D, Beyer HL, Boyce MS, Smith DW, Duchesne T, Mao JS (2005) Wolves influence elk movements: behavior shapes a trophic cascade in Yellowstone National Park. Ecology 86(5):1320–1330

    Article  Google Scholar 

  • Galpern P, Manseau M (2013) Modelling the influence of landscape connectivity on animal distribution: a functional grain approach. Ecography 36(9):1004–1016

    Article  Google Scholar 

  • Goodrich JM, Kerley LL, Smirnov EN, Miquelle DG, McDonald L, Quigley HB, Hornocker MB, McDonald T (2008) Survival rates and causes of mortality of Amur tigers on and near the Sikhote-Alin Biosphere Zapovednik. J Zool 276(4):323–329

    Article  Google Scholar 

  • Goodrich J, Lynam A, Miquelle D, Wibisono H, Kawanishi K, Pattanavibool A, Htun S, Tempa T, Karki J, Jhala Y, Karanth U (2015) Panthera tigris. The IUCN red list of threatened species 2015: e.T15955A50659951. 10.2305/IUCN.UK.2015-2.RLTS.T15955A50659951.en. Accessed 08 Feb 2016

  • Gour DS, Bhagavatula J, Bhavanishankar M, Reddy PA, Gupta JA, Sarkar MS, Shaik MH, Segu H, Ravinder G, Shivaji S (2013) Philopatry and dispersal patterns in tiger (Panthera tigris). PloS One 8(7):e66956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grand J, Buonaccorsi J, Cushman SA, Griffin CR, Neel MC (2004) A multiscale landscape approach to predicting bird and moth rarity hotspots in a threatened pitch pine—scrub oak community. Conserv Biol 18(4):1063–1077

    Article  Google Scholar 

  • Gurung TR, Bousquet F, Trébuil G (2006) Companion modeling, conflict resolution, and institution building: sharing irrigation water in the Lingmuteychu Watershed, Bhutan. Ecol Soc 11(2):36

    Google Scholar 

  • Hanski I, Gilpin M (eds) (1997) Metapopulation biology: ecology, genetics and evolution. Academic Press, London

    Google Scholar 

  • Hegel TM, Cushman SA, Evans J, Huettmann F (2010) Current state of the art for statistical modelling of species distributions. In: Cushman SA, Heutmann S (eds) Spatial complexity, informatics, and wildlife conservation. Springer, Berlin, pp 273–311

    Chapter  Google Scholar 

  • Hilty JA, Lidicker WZ Jr, Merenlender A (2006) Corridor ecology: the science and practice of linking landscapes for biodiversity conservation. Island Press, Washington, DC

    Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2006) CGIAR-CSI SRTM 90 m database, version 4

  • Joshi A, Vaidyanathan S, Mondol S, Edgaonkar A, Ramakrishnan U (2013) Connectivity of tiger (Panthera tigris) populations in the human-influenced forest mosaic of central India. PloS One 8(11):e77980. doi:10.1371/journal.pone.0077980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landguth EL, Hand BK, Glassy J, Cushman SA, Sawaya MA (2012) UNICOR: a species connectivity and corridor network simulator. Ecography 35(1):9–14

    Article  Google Scholar 

  • Martin AE, Fahrig L (2012) Measuring and selecting scales of effect for landscape predictors in species habitat models. Ecol Appl 22:2277–2292

    Article  PubMed  Google Scholar 

  • Mateo Sánchez MC, Cushman SA, Saura S (2013) Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). Int J Geogr Inf Sci. doi:10.1080/13658816.2013.776684

    Google Scholar 

  • Mateo Sánchez MC, Cushman SA, Saura S (2014) Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). Int J Geogr Inf Sci 28(8):1531–1546

    Article  Google Scholar 

  • Mateo-Sánchez MC, Balkenhol N, Cushman S, Pérez T, Domínguez A, Saura S (2015) A comparative framework to infer landscape effects on population genetic structure: are habitat suitability models effective in explaining gene flow? Landscape Ecol 30(8):1405–1420

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. 2012. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • Meher-Homji VM (1990) Vegetation types of India in relation to environmental conditions. In: Daniel JC, Serrao JS (eds) Conservation in developing countries: problems and prospects. Oxford University Press, Bombay, pp 95–110

    Google Scholar 

  • Morales JM, Ellner SP (2002) Scaling up animal movements in heterogeneous landscapes: the importance of behavior. Ecology 83(8):2240–2247

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org/

  • Reddy PA, Gour DS, Bhavanishankar M, Jaggi K, Hussain SM, Harika K, Shivaji S (2012) Genetic evidence of tiger population structure and migration within an isolated and fragmented landscape in northwest India. PloS One 7(1):e29827. doi:10.1371/journal.pone.0029827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reding DM, Bronikowski AM, Johnson WE, Clark WR (2012) Pleistocene and ecological effects on continental-scale genetic differentiation in the bobcat (Lynx rufus). Mol Ecol 21(12):3078–3093

    Article  PubMed  Google Scholar 

  • Reding DM, Cushman SA, Gosselink TE, Clark WR (2013) Linking movement behavior and fine-scale genetic structure to model landscape connectivity for bobcats (Lynx rufus). Landscape Ecol 28(3):471–486

    Article  Google Scholar 

  • Riley SJ, DeGloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Intermt J Sci 5(1–4):23–27

    Google Scholar 

  • Sawyer SC, Epps CW, Brashares JS (2011) Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes? J Appl Ecol 48(3):668–678

    Article  Google Scholar 

  • Schaller GB (2009) The deer and the tiger. University of Chicago Press, Chicago

    Google Scholar 

  • Seidensticker J (2015) Biodiversity resilience in the Central Indian Highlands is contingent on maintaining and recovering landscape connectivity: the tiger as a case study. Reg Environ Change. doi:10.1007/s10113-015-0846-6

    Google Scholar 

  • Seidensticker J, Christie S, Jackson P (1999) Riding the tiger: tiger conservation in human dominated landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Sharma S, Dutta T, Maldonado JE, Wood TC, Panwar HS, Seidensticker J (2013) Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proc R Soc Lond 280(1767):20131506

    Article  Google Scholar 

  • Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19(17):3603–3619

    Article  CAS  PubMed  Google Scholar 

  • Shirk AJ, Raphael MG, Cushman SA (2014) Spatiotemporal variation in resource selection: insights from the American marten (Martes americana). Ecol Appl 24(6):1434–1444

    Article  Google Scholar 

  • Singh V, Murthy RS, Pofali RM, Saxena RK (1983) Terrain analysis of Panna District, Bundelkhand, Madhya Pradesh, using LANDSAT imagery. J Indian Soc of Photo-Interpret Remote Sens 11(1):43–48

    Google Scholar 

  • Singh R, Qureshi Q, Sankar K, Krausman PR, Goyal SP (2013) Use of camera traps to determine dispersal of tigers in semi-arid landscape, western India. J Arid Environ 98:105–108

    Article  Google Scholar 

  • Singh SK, Sharma V, Mishra S, Pandey P, Kumar VP, Goyal SP (2015) Understanding tiger–human conflict in Corbett Tiger Reserve (CTR) India: based on the genetic analysis. Wildl Biol Pract 11(1):1–11

    Google Scholar 

  • Smith JLD (1993) The role of dispersal in structuring the Chitwan tiger population. Behaviour 124:165–195

    Article  Google Scholar 

  • Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner KIM (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19(17):3576–3591

    Article  PubMed  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Thompson CM, Mcgarigal K (2002) The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York (USA). Landscape Ecol 17(6):569–586

    Article  Google Scholar 

  • Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics: martes Americana in Northern Idaho. Landscape Ecol 25(10):1601–1612

    Article  Google Scholar 

  • Wasserman TN, Cushman SA, Wallin DO, Hayden J (2012) Multi scale habitat relationships of Martes americana in Northern Idaho, USA. Research paper RMRS-RP-94. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3(4):385–397

    Article  Google Scholar 

  • Wikramanayake ED, Dinerstein E, Robinson JG, Karanth KU, Rabinowitz A, Olson D, Mathew T, Hedao P, Connor M, Hemley G, Bolze D (1999) Where can tigers live in the future? A framework for identifying high-priority areas for the conservation of tigers in the wild. In: Seidensticker J, Christie S, Jackson P (eds) Riding the tiger: tiger conservation in human-dominated landscapes. Cambridge University Press, Cambridge, pp 256–272

    Google Scholar 

  • Wildlife Conservation Society (WCS), Center for International Earth Science Information Network (CIESIN) Columbia University (2005) Last of the wild project, version 2, 2005 (LWP-2): global human footprint dataset (geographic). NASA Socioeconomic Data and Applications Center (SEDAC). Palisades, NY. doi: 10.7927/H4M61H5F

  • Young AG, Clarke GM (2000) Genetics, demography and viability of fragmented populations, vol 4. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Yumnam B, Jhala YV, Qureshi Q, Maldonado JE, Gopal R, Saini S, Srinivas Y, Fleischer RC (2014) Prioritizing tiger conservation through landscape genetics and habitat linkages. PloS One. doi:10.1371/journal.pone.0111207

    Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27(6):777–797

    Article  Google Scholar 

  • Zeller KA, Rabinowitz A, Salom-Perez R, Quigley H (2013) The jaguar corridor initiative: a range-wide conservation strategy. In: Ruiz-Garcia M, Shostell JM (eds) Molecular population genetics, evolutionary biology, and biological conservation of neotropical carnivores. Nova Science Publishers, New York, pp 629–658

    Google Scholar 

  • Zeller KA, McGarigal K, Beier P, Cushman SA, Vickers TW, Boyce WM (2014) Sensitivity of landscape resistance estimates based on point selection functions to scale and behavioral state: pumas as a case study. Landscape Ecol 29(3):541–557

    Article  Google Scholar 

  • Zeller KA, McGarigal K, Cushman SA, Beier P, Vickers TW, Boyce WM (2015) Using step and path selection functions for estimating resistance to movement: pumas as a case study. Landscape Ecol. doi:10.1007/s10980-015-0301-6

Download references

Acknowledgments

We thank Madhya Pradesh Forest Department, National Tiger Conservation Authority and Wildlife Institute of India for the opportunity to undertake this study. We are grateful to Dr, H.S. Pabla, Dr. Rajesh Gopal, Shri. Narendra Kumar, Shri. Dharmendra Shukla, Dr. Suhas Kumar, Shri. R. Sreenivasa Murthy, Shri. P.R. Sinha, Dr. V.B. Mathur, Shri. S.P. Yadav, Shri. Vikram Parihar, Dr. Parag Nigam and Dr. Sanjeev Gupta for support and encouragement. All researchers, volunteers and assistants (Ravi Parmar, Devi Pryadarshini, J Yogesh, Raja Raj Tilak, Rahul K, Arun Kumar, Sunil Kumar, Sunal K Roamin, Pappu Yadav, Md Rauf, Darshan Singh and Manoj Yadav), and field staff of provided support for data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Krishnamurthy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamurthy, R., Cushman, S.A., Sarkar, M.S. et al. Multi-scale prediction of landscape resistance for tiger dispersal in central India. Landscape Ecol 31, 1355–1368 (2016). https://doi.org/10.1007/s10980-016-0363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0363-0

Keywords

Navigation