Skip to main content

Advertisement

Log in

A probabilistic eco-hydrological model to predict the effects of climate change on natural vegetation at a regional scale

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Climate change may hamper the preservation of nature targets, but may create new potential hotspots of biodiversity as well. To timely design adequate measures, information is needed about the feasibility of nature targets under a future climate. Habitat distribution models may provide this, but current models have certain drawbacks: they apply indirect empirical relationships between habitat and vegetation, they often disregard spatially explicit information about groundwater, and they are designed for too coarse spatial scales. We introduce a model that explicitly takes into account spatial effects through groundwater and that can easily be adapted to new scientific approaches and the needs of end-users. It combines (spatially explicit) data sources, transfer functions derived from mechanistic models, and robust relationships between habitat factors and plant characteristics. Outputs are maps showing the occurrence probabilities of vegetation types and their associated conservation values, both on a spatial scale that fits the needs of nature managers and spatial planners. The model was applied to a catchment of 270 km2 to forecast, on a 25 m resolution, the effects of a national climate scenario (related to IPCC A2 and A1B). Computation time was a couple of minutes on a standard PC. Severe loss was predicted for wet and mesotrophic species-rich grasslands, while vegetation of dry and acidic soils appeared to profit. The results were not univocal though, and could probably not have been foreseen on the basis of expert judgement and logic alone, especially because of edaphic factors and spatial hydrological relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baird AJ (1999) Modelling. In: Baird AJ, Wilby RL (eds) Eco-hydrology. Plants and water in terrestrial and aquatic environment. Routlegde, London

    Google Scholar 

  • Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour JB (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Change Biol 8(4):390–407

    Article  Google Scholar 

  • Bakker A, Bessembinder J (2007) Neerslagreeksen voor de KNMI’06 scenario’s. H2O 22:45–47

    Google Scholar 

  • Bartholomeus RP, Witte JPM (2013) Ecohydrological Stress - Groundwater To Stress Transfer. Theory and manual version 1.0. KWR Watercycle Research Institute, Nieuwegein

    Google Scholar 

  • Bartholomeus RP, Witte JPM, Van Bodegom PM, Aerts R (2008) The need of data harmonization to derive robust empirical relationships between soil conditions and vegetation. J Veg Sci 19:799–808

    Article  Google Scholar 

  • Bartholomeus RP, Witte JPM, Van Bodegom PM, Van Dam JC, Aerts R (2011) Climate change threatens endangered plant species by stronger and interacting water-related stresses. J Geophys Res 116(G4):G04023

    Google Scholar 

  • Bartholomeus RP, Witte JPM, Bodegom PM, Dam JC, Becker P, Aerts R (2012) Process-based proxy of oxygen stress surpasses indirect ones in predicting vegetation characteristics. Ecohydrology 5:746–758

    Article  Google Scholar 

  • Botkin DB, Saxe H, Araújo MB, Betts R, Bradshaw RHW, Cedhagen T, Chesson P, Dawson TP, Etterson JR, Faith DP, Ferrier S, Guisan A, Hansen A, Hilbert DW, Loehle C, Margules C, New M, Sobel MJ, Stockwell DRB (2007) Forecasting the effects of global warming on biodiversity. Bioscience 57(3):227–236

  • Buckley LB, Urban MC, Angilletta MJ, Crozier LG, Rissler LJ, Sears MW (2010) Can mechanism inform species’ distribution models? Ecol Lett 13(8):1041–1054

    PubMed  Google Scholar 

  • Cirkel DG, Witte JPM, Van der Zee SEATM (2010) Estimating seepage intensities from groundwater level time series by inverse modelling: a sensitivity analysis on wet meadow scenarios. J Hydrol 385(1–4):132–142

    Article  Google Scholar 

  • Cirkel DG, Van Beek CGEM, Witte JPM, Van Der Zee SEATM (2013) Sulphate reduction and calcite precipitation in relation to internal eutrophication of groundwater fed alkaline fens. Biogeochemistry:1-19

  • Cirkel DG, Witte JPM, Nijp JN, van Bodegom PM, Zee SEATM (2014) The influence of spatiotemporal variability and adaptations to hypoxia on empirical relationships between soil acidity and vegetation. Ecohydrology 7:21–23

    Article  CAS  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Clim Change 2:45–65

    Google Scholar 

  • De Haan M, Runhaar H, Cirkel G (2010) Waternood Kansrijkdommodule Pilotstudie in Noord-Nederland en toepassing voor vervaardiging waterkansenkaarten voor natuur. KWR, Nieuwegein, p 55

    Google Scholar 

  • De Lange WJ, Prinsen GF, Hoogewoud JC, Veldhuizen AA, Verkaik J, Oude-Essink GHP, Van Walsum PEV, Delsman JR, Huinink JC, Massop HTL, Kroon T (2014) An operational, multi-scale, multi-model system for consensus-based, integrated water management and policy analysis: the Netherlands hydrological instrument. Environ Model Softw 59:98–108

  • De Louw PGB (2013) Saline seepage in deltaic areas—Preferential groundwater discharge through boils and interactions between thin rainwater lenses and upward saline seepage PhD. VU University Amsterdam, Amsterdam

    Google Scholar 

  • Douma JC, Aerts R, Witte JPM, Bekker RM, Kunzmann D, Metselaar K, Van Bodegom PM (2012a) A combination of functionally different plant traits provides a means to quantitatively predict a broad range of species assemblages in NW Europe. Ecography 35:364–373

  • Douma JC, Bardin V, Bartholomeus RP, Bodegom PM (2012b) Quantifying the functional responses of vegetation to drought and oxygen stress in temperate ecosystems. Funct Ecol 26(6):1355–1365

    Article  Google Scholar 

  • Douma JC, Witte JPM, Aerts R, Bartholomeus RP, Ordoñez JC, Venterink HO, Wassen MJ, van Bodegom PM (2012c) Towards a functional basis for predicting vegetation patterns; incorporating plant traits in habitat distribution models. Ecography 35(4):294–305

  • Drake JA (1991) Community-assembly mechanics and the structure of an experimental species ensemble. Am Nat 137:1–26

    Article  Google Scholar 

  • Early R, Anderson B, Thomas CD (2008) Using habitat distribution models to evaluate large-scale landscape priorities for spatially dynamic species. J Appl Ecol 45(1):228–238

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289(5487):2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Ellenberg H (1992) Zeigerwerte der Gefäßpflanzen (ohne Rubus). In: Ellenberg H., Weber H. E., Düll R., Wirth V., Werner W., Paulißen D. (eds), Zeigerwerte von Pflanzen in Mitteleuropa, Scripta Geobotanica, 18 edn

  • Fay PA, Kaufman DM, Nippert JB, Carlisle JD, Harper CW (2008) Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Glob Change Biol 14(7):1600–1608

    Article  Google Scholar 

  • Fujita Y, Van Bodegom PM, Runhaar J, Olde Venterink H, Witte JPM (2013a) Towards a proper integration of hydrology in predicting soil nitrogen mineralization rates along natural moisture gradients. Global Biogeochem Cycles 58:302–312

    CAS  Google Scholar 

  • Fujita Y, Van Bodegom PM, Witte JPM (2013b) Relationships between nutrient-related plant traits and combinations of soil N and P Fertility. PLoS ONE 8(12):e83735

    Article  PubMed Central  PubMed  Google Scholar 

  • Fujita Y, Witte JPM, Van Bodegom PM (2014) Incorporating microbial ecology concepts into soil mineralization models to improve regional predictions of carbon and nitrogen fluxes. Soil Biol Biochem 28(3):223–238

    CAS  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties. John Wiley and Sons, Chicester, UK

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW 2000, The U.S. geological survey modular ground water model user guide to modularization concepts and the ground water flow process. Open-File Report 00-92. US Geological Survey, Reston, Virginia

  • Hazeu GW (2005) Landelijk Grondgebruiksbestand Nederland (LGN5); monitoring landgebruik van 1995–2004. Geo-Info 10(2):456–462

    Google Scholar 

  • Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Sys Saf 81(1):23–69

    Article  Google Scholar 

  • Hertog AJ, Rijken M (1992) Geautomatiseerde bepaling van natuurbehoudswaarde in vegetatie-opnamen. Provincie Gelderland, Arnhem

    Google Scholar 

  • Karl TR, Knight RW, Plummer N (1995) Trends in high-frequency climate variability in the twentieth century. Nature 377(6546):217–220

    Article  CAS  Google Scholar 

  • Karlsson IB, Sonnenborg TO, Jensen KH, Refsgaard JC (2014) Historical trends in precipitation and stream discharge at the Skjern River catchment Denmark. Hydrol. Earth Syst. Sci. 18(2):595–610

    Article  Google Scholar 

  • Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3(2):157–164

    Article  Google Scholar 

  • Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58(9):811–821

  • Kroes JG, Van Dam JC, Groenendijk P, Hendriks RFA, Jacobs CMJ (2008) SWAP version 3.4, Theory description and user manual. Wageningen University and Research Centre, Wageningen

    Google Scholar 

  • Kros J, Reinds GJ, De Vries W, Latour JB, Bollen MJS (1995) Modelling of soil acidity and nitrogen availability in natural ecosystems in response to changes is acid deposition and hydrology. Report 95. SC-DLO, Wageningen

  • Laughlin DC, Joshi C, van Bodegom PM, Bastow ZA, Fulé PZ (2012) A predictive model of community assembly that incorporates intraspecific trait variation. Ecol Lett 15(11):1291–1299

    Article  PubMed  Google Scholar 

  • Lenz A, Hoch G, Vitasse Y, Korner C (2013) European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. New Phytol 200:1166–1175

    Article  PubMed  Google Scholar 

  • Levine JM, McEachern AK, Cowan C (2008) Rainfall effects on rare annual plants. J Ecol 96(4):795–806

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westeboy M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21(4):178–185

    Article  PubMed  Google Scholar 

  • Ordoñez JC, Van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18(2):137–149

    Article  Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima D, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut JC, Seastedt T, Garcia Moya E, Kamnalrut A, Kinyamario JI (1993) Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem Cycles 7:785–809

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr. 12:361–371

    Article  Google Scholar 

  • Poorter H, Navas M-L (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157(2):175–198

    Article  Google Scholar 

  • Porporato A, Daly E, Rodriguez-Iturbe I (2004) Soil water balance and ecosystem response to climate change. Am Nat 164(5):625–632

    Article  PubMed  Google Scholar 

  • Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ (2014) Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol Lett 17(1):82–91

    Article  PubMed  Google Scholar 

  • Pulles JW (1985) Beleidsanalyse voor de waterhuishouding in Nederland/PAWN. Hoofdirectie van de Waterstaat

  • Schaminée JHJ, Stortelder AHF, Westhoff V (1995a) De Vegetatie van Nederland. Inleiding tot de plantensociologie: grondslagen, methoden en toepassingen. Opulus press, Uppsala/Leiden

    Google Scholar 

  • Schaminée JHJ, Weeda EJ, Westhoff V (1995b) De vegetatie van Nederland. Wateren, moerassen, natte heiden. Opulus Press, Uppsala

    Google Scholar 

  • Schaminée JHJ, Stortelder W, Weeda EJ (1996) De vegetatie van Nederland. Graslanden, zomen, droge heiden. Opulus Press, Uppsala

    Google Scholar 

  • Schaminée JHJ, Weeda EJ, Westhoff V (1998) De vegetatie van Nederland. Opulus Press, Uppsala, SE, Leiden, NL

    Google Scholar 

  • Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical Summary. In: Solomon S, Qin D, Manning M et al (eds) Climate Change 2007: The physical science basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change

  • Stortelder AHF, Schaminée JHJ, Hommel PWFM (1999) De vegetatie van Nederland. Opulus Press, Uppsala, SE, Leiden, NL

    Google Scholar 

  • Ter Maat J, Haasnoot M, Van der Vat M, Hunink J, Prinsen G, Visser M, Boderie P, Van Ek R, Maarse M, Van der Sligte R, Verheij H, Wesselius C (2014) Effecten van maatregelen voor de zoetwatervoorziening in Nederland in de 21e eeuw, Deltaprogramma - Deelprogramma Zoetwater - fase 4. 1209141-001. Deltares, Delft

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Fereira de Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extincition risk from climate change. Nature 427:145–148

  • Tilman D (1985) The Resource-Ratio Hypothesis of Plant Succession. Am Nat 125:827–852

    Article  Google Scholar 

  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Change 4(1):17–22

    Article  Google Scholar 

  • Van Bodegom PM, Douma JC, Witte JPM, Ordoñez JC, Bartholomeus RP, Aerts R (2012) Going beyond limitations of plant functional types when predicting global ecosystem–atmosphere fluxes: exploring the merits of traits-based approaches. Glob Ecol Biogeogr 21(6):625–636

    Article  Google Scholar 

  • Van Dam JC, Groenendijk P, Hendriks RFA, Kroes JG (2008) Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone J 7(2):640–653

    Article  Google Scholar 

  • Van den Hurk B, Klein Tankink A, Lenderink G, Van Ulden A, Van Oldenborgh GJ, Katsman C, Van den Brink H, Keller F, Bessembinder J, Burgers G, Komen G, Hazeleger W, Drijfhout S (2006) KNMI Climate change scenarios 2006 for the Netherlands. KNMI, De Bilt, NL

  • Van der Maarel E, Sykes MT (1993) Small-scale plant-species turnover in a limestone grassland—the carousel model and some comments on the niche concept. J Veg Sci 4:179–188

    Article  Google Scholar 

  • Van der Meijden R, Odé B, Groen CLG, Witte JPM, Bal D (2000) Bedreigde en kwetsbare vaatplanten in Nederland Basisrapport met voorstel voor de Rode Lijst. Gorteria 26(4):85–208

    Google Scholar 

  • Van der Sande C, Soudarissanane S, Khoshelham K (2010) Assessment of relative accuracy of AHN-2 laser scanning data using planar features. Sensors 10:8198–8214

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Ek R, Janssen G, Kuijper M, Veldhuizen AA, Wamelink GWW, Mol J, Groot A, Schipper P, Kroes J, Supit I, Simmelink E, Van Geer F, Janssen P, Van der Sluijs J, Bessembinder J (2012) NMDC-Innovatieproject van Kritische zone tot Kritische Onzekerheden: case studie Baakse beek. NMDC rapport 1205952

  • Van Ek R, Witte JPM, Mol-Dijkstra JP, De Vries W, Wamelink GWW, Hunink J, Van der Linden W, Runhaar J, Bonten L, Bartholomeus R, Mulder HM, Fujita Y (2014) Ontwikkeling van een gemeenschappelijke effect module voor terrestrische natuur. Amersfoort, STOWA, p 150

  • Van Oene H, Berendse F, De Kovel CGF (1999) Model analysis of the effects of historic CO2 levels and nitrogen inputs on vegetation succession. Ecol Appl 9(3):920–935

    Google Scholar 

  • van Walsum PEV, Groenendijk P (2008) Quasi Steady-State Simulation of the Unsaturated Zone in Groundwater Modeling of Lowland Regions. Vadose Zone J 7(2):769–781

    Article  Google Scholar 

  • van Walsum PEV, Supit I (2012) Influence of ecohydrologic feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios. Hydrol Earth Syst Sci 16(6):1577–1593

    Article  Google Scholar 

  • Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin G, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53(10):941–952

  • Witte JPM (1998) National water management and the value of nature. Landbouwuniversiteit, Wageningen

    Google Scholar 

  • Witte JPM, Meuleman JAM, Van der Schaaf S, Raterman B (2004) Eco-Hydrol Biodivers. In: Feddes RA, De Rooij GH, Van Dam JC (eds) Unsaturated zone modelling: Progress, challenges and applications. Wageningen University and Research Centre, Wageningen, pp 301–329

    Google Scholar 

  • Witte JPM, Wójcik RB, Torfs PJJF, De Haan MWH, Hennekens S (2007) Bayesian classification of vegetation types with Gaussian mixture density fitting to indicator values. J Veg Sci 18:605–612

    Article  Google Scholar 

  • Witte JPM, Runhaar J, Van Ek R (2008) Ecohydrological modelling for managing scarce water resources in a groundwater-dominated temperate system. In: Harper D, Zalewski MEJ, Pacini N (eds) Ecohydrology: Processes, Models and Case Studies. CABI Publishing, Oxfordshire, pp 88–111

    Google Scholar 

  • Witte JPM, Pastoors R, Van der Hoek DJ, Bartholomeus RP, Van Loon A, Van Bodegom PM (2011a) Is het Nationaal Hydrologische Instrumentarium gereed voor het voorspellen van natuureffecten? Stromingen 17(2):15–26

    Google Scholar 

  • Witte JPM, Strasser T, Slings R (2011b) Kwantitatieve vegetatiewaardering beperkt bruikbaar Landschap 28(2):56-66

  • Witte JPM, Runhaar J, van Ek R, van der Hoek DCJ, Bartholomeus RP, Batelaan O, van Bodegom PM, Wassen MJ, van der Zee SEATM (2012) An ecohydrological sketch of climate change impacts on water and natural ecosystems for the Netherlands: bridging the gap between science and society. Hydrol Earth Syst Sci 16(11):3945–3957

  • Wösten JHM, Pachepsky YA, Rawls WJ (2001) Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J Hydrol 251:123–150

    Article  Google Scholar 

  • Van der Knaap YAM, De Graaf M, Van Ek R, Witte JPM, Bierkens MFP, Van Bodegom PM (this issue) Potential impacts of groundwater conservation measures on catchment-wide vegetation patterns in a future climate. Landscape Ecol

Download references

Acknowledgments

This work was carried out within the joint research programme of the Dutch Water Utility sector (http://www.kwrwater.nl/BTO), and the project Climate Adaptation for Rural Areas (CARE), which was funded by the Knowledge for Climate Programme (http://knowledgeforclimate.climateresearchnetherlands.nl/climateadaptationforruralareas) as well as by the province of Gelderland and the water board Rijn en IJssel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Philip M. Witte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witte, JP.M., Bartholomeus, R.P., van Bodegom, P.M. et al. A probabilistic eco-hydrological model to predict the effects of climate change on natural vegetation at a regional scale. Landscape Ecol 30, 835–854 (2015). https://doi.org/10.1007/s10980-014-0086-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-014-0086-z

Keywords

Navigation