Skip to main content

Advertisement

Log in

A new approach to ecological land classification for the Canadian boreal forest that integrates disturbances

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Traditional approaches to ecological land classification (ELC) can be enhanced by integrating, a priori, data describing disturbances (natural and human), in addition to the usual vegetation, climate, and physical environment data. To develop this new ELC model, we studied an area of about 175,000 km2 in the Abies balsameaBetula papyrifera and Picea mariana-feathermoss bioclimatic domains of the boreal forest of Québec, in eastern Canada. Forest inventory plots and maps produced by the Ministère des Ressources naturelles du Québec from 1970 to 2000 were used to characterize 606 ecological districts (average area 200 km2) according to three vegetation themes (tree species, forest types, and potential vegetation-successional stages) and four sets of explanatory variables (climate, physical environment, natural and human disturbances). Redundancy, cluster (K-means) and variation partitioning analyses were used to delineate, describe, and compare homogeneous vegetation landscapes. The resulting ELC is hierarchical with three levels of observation. Among the 14 homogeneous landscapes composing the most detailed level, some are dominated by relatively young forests originating from fires dating back to the period centered on 1921. In others, forest stands are older (fires from the period centered on 1851), some are under the influence of insect outbreaks and fires (southern part), while the rest are strongly affected by human activities and Populus tremuloides expansion. For all the study area and for parts of it, partitioning reveals that natural disturbance is the dominant data set explaining spatial variation in vegetation. However, the combination of natural disturbances, climate, physical environment and human disturbances always explains a high proportion of variation. Our approach, called “ecological land classification of homogeneous vegetation landscapes”, is more comprehensive than previous ELCs in that it combines the concepts and goals of both landscape ecology and ecosystem-based management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5:169–211

    Google Scholar 

  • Allen TFH, Hoekstra TW (1992) Toward a unified ecology. Columbia University Press, New York

    Google Scholar 

  • Arbour ML, Bergeron Y (2011) Effect of increased Populus cover on Abies regeneration in the Picea-feathermoss boreal forest. J Veg Sci 22:1132–1142

    Article  Google Scholar 

  • Bailey RG (1983) Delineation of ecosystem regions. Environ Manag 7:365–373

    Article  Google Scholar 

  • Bailey RG (1987) Suggested hierarchy of criteria for multiscale ecosystem mapping. Landsc Urban Plan 14:313–319

    Article  Google Scholar 

  • Bailey RG (2009) Ecosystem geography: from ecoregions to sites, 2nd edn. Springer, Secaucus

    Book  Google Scholar 

  • Bailey RG, Zoltai SC, Wiken EB (1985) Ecological regionalization in Canada and the United States. Geoforum 16:265–275

    Article  Google Scholar 

  • Barnes BV, Pregitzer KS, Spies TA, Spooner VH (1982) Ecological forest site classification. J For 80:493–498

    Google Scholar 

  • Bergeron Y, Gauthier S, Kafka V, Lefort P, Lesieur D (2001) Natural fire frequency for the eastern Canadian boreal forest: consequences for sustainable forestry. Can J For Res 31:384–391

    Article  Google Scholar 

  • Borcard D, Legendre P (1994) Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environ Ecol Stat 1:37–61

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Boucher Y, Arseneault D, Sirois L, Blais L (2009) Logging pattern and landscape changes over the last century at the boreal and deciduous transition in Eastern Canada. Landscape Ecol 24:171–184

    Article  Google Scholar 

  • Carleton TJ, MacLellan P (1994) Woody vegetation response to fire versus clear-cutting logging: a comparative survey in the central Canadian boreal forest. Ecoscience 1:141–152

    Google Scholar 

  • Cissel JH, Swanson FJ, Weisberg PJ (1999) Landscape management using historical fire regimes: Blue river, Oregon. Ecol Appl 9:1217–1231

    Article  Google Scholar 

  • Cleland DT, Avers PE, McNab WH, Jensen ME, Bailey RG, King T, Russell WE (1997) National hierarchical framework of ecological units. In: Boyce MS, Haney A (eds) Ecosystem management applications for sustainable forest and wildlife resources. Yale University Press, New Haven, pp 181–200

    Google Scholar 

  • Clements FE (1910) The life history of lodgepole burn forests. US Department of Agriculture, Forest Service, Washington, D.C. Bulletin 79, p 56

  • Couillard PL, Payette S, Grondin P (2012) Recent impact of fire on high-altitude balsam fir forests in south-central Quebec. Can J For Res 42:1289–1305

    Article  Google Scholar 

  • Cyr D, Gauthier S, Bergeron Y, Carcaillet C (2009) Forest management is driving the eastern North American boreal forest outside its natural range of variability. Front Ecol Environ 7:519–524

    Google Scholar 

  • Damman AWH (1964) Some forest types of central Newfoundland and their relation to environmental factors. Forest science monograph and Society of American foresters (no. 8)

  • Damman AWH (1979) The role of vegetation analysis in land classification. For Chron 55:175–182

    Google Scholar 

  • Dansereau P (1957) Biogeography, an ecological perspective. Ronald Press, New York

    Google Scholar 

  • Daubenmire RF (1968) Plant communities, a textbook of plant synecology. Harper and Row, New York

    Google Scholar 

  • Dufrêne M, Legendre P (1991) Geographic structure and potential ecological factors in Belgium. J Biogeogr 18:257–266

    Article  Google Scholar 

  • Gauthier S, Leduc A, Harvey B, Bergeron Y, Drapeau P (2001) Les perturbations naturelles et la diversité écosystémique. Nat Can 125:10–17

    Google Scholar 

  • Gerardin V, Ducruc JP (1990) The ecological reference framework for Quebec: a useful tool for forest sites evaluation. Vegetatio 87:19–27

    Article  Google Scholar 

  • Grandtner MM (1966) La végétation forestière du Québec méridional. Presses Université Laval, Québec

    Google Scholar 

  • Grondin P, Cimon A (2003) Les enjeux de biodiversité relatifs à la composition forestière. Gouvernement du Québec, Ministère des Ressources naturelles, de la Faune et des Parcs. Direction de la recherche forestière www.mrnfp.gouv.qc.ca/forets/connaissances/recherche

  • Grondin P, Noël J, Hotte D (2007) L’intégration de la végétation et de ses variables explicatives à des fins de classification et de cartographie d’unités homogènes du Québec méridional. Ministère des Ressources naturelles et de la Faune, Direction de la recherche forestière. Mémoire de recherche forestière no 150, p 62

  • Grossman DH, Bourgeron P, Bush DN, Cleland D, Platts W, Ray GC, Robins CR, Roloff G (1999) Principles for ecological classification. In: Szaro RC, Johnson NC, Sexton WT, Malk AJ (eds) Ecological stewardship: a common reference for ecosystem management, vol 2. Elsevier Science, Oxford, pp 353–393

    Google Scholar 

  • Halliday WED (1937) A forest classification for Canada. Department of Mines and Resources, Land, Parks and Resources Branch, Canada, Ottawa, Forest Service Bulletin no 89

  • Hardy R, Séguin N (1984) Forêt et société en Mauricie: la formation de la région de Trois- Rivières 1830-1930. Boréal-Express, Montreal

    Google Scholar 

  • Hare FK (1950) Climate and zonal divisions of the boreal forest formation in eastern Canada. Geogr Rev 40:615–635

    Article  Google Scholar 

  • Heinselman ML (1973) Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quat Res 3:329–382

    Article  Google Scholar 

  • Hills GA (1960) Regional site research. For Chron 36:401–423

    Google Scholar 

  • Hustich I (1949) On the forest geography of the Labrador Peninsula. A preliminary synthesis. Acta geogr 10:1–63

    Google Scholar 

  • Jenny H (1958) Role of the plant factor in the pedogenic functions. Ecology 39:5–16

    Article  Google Scholar 

  • Jurdant M, Bélair JL, Gerardin V, Ducruc JP (1977) L’inventaire du Capital-Nature: méthode de classification et de cartographie écologique du territoire (3ème approximation). Pêches et Environnement Canada, Série de la classification écologique du territoire, no 2

  • Klijn F, de Haes HAU (1994) A hierarchical approach to ecosystems and its implications for ecological land classification. Landscape Ecol 9:89–104

    Google Scholar 

  • Küchler AW (1964) Potential natural vegetation of the conterminous United States. American Geographical Society, vol 36, New-York

  • Laquerre S, Leduc A, Harvey B (2009) Augmentation du couvert en peuplier faux-tremble dans les pessières noires du nord-ouest du Québec après coupe totale. Ecoscience 16:483–491

    Article  Google Scholar 

  • Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138

    Article  Google Scholar 

  • Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. 3rd English edn. Elsevier, The Netherlands

  • Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450

    Article  Google Scholar 

  • Lertzman KP, Fall J (1998) From forest stands to landscapes: spatial scales and the roles of disturbances. In: Peterson DL, Parker VT (eds) Ecological scale: theory and applications. Columbia University Press, New York, pp 339–367

    Google Scholar 

  • Lorimer CG (2001) Historical and ecological roles of disturbance in eastern North America forests: 9,000 years of change. Wildl Soc Bull 29:425–439

    Google Scholar 

  • Mansuy N, Gauthier S, Robitaille A, Bergeron Y (2010) The effects of surficial deposit–drainage combinations on spatial variations of fire cycles in the boreal forest of eastern Canada. Int J Wildland Fire 19:1083–1098

    Article  Google Scholar 

  • McCune B, Allen TFH (1985) Will similar forests develop on similar sites? Can J Bot 63:367–376

    Article  Google Scholar 

  • McGarigal K, Cushman SA (2005) The gradient concept of landscape structure. In: Wiens J, Moss M (eds) Issues and perspectives in landscape ecology. Cambridge University Press, Cambridge, pp 112–119

    Chapter  Google Scholar 

  • Ohmann JL, Spies TA (1998) Regional gradient analysis and spatial pattern of woody plant communities of Oregon forests. Ecol Monogr 68:151–182

    Article  Google Scholar 

  • Omi PN, Wensel LC, Murphy JL (1979) An application of multivariate statistics to land-use planning: classifying land units into homogeneous zones. For Sci 25:399–414

    Google Scholar 

  • Östlund L, Zackrisson O, Axelsson AL (1997) The history and transformation of a Scandinavian boreal forest landscape since the 19th century. Can J For Res 27:1198–1206

    Article  Google Scholar 

  • Payette S (1992) Fire as a controlling process in the North American boreal forest. In: Shugart HH, Leemans R, Bonan GB (eds) A systems analysis of the global boreal forest. Cambridge University Press, New York, pp 144–169

    Chapter  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Pojar J, Klinka K, Meidinger DV (1987) Biogeoclimatic ecosystem classification in British Columbia. For Ecol Manag 22:119–154

    Article  Google Scholar 

  • Powell DC (2000) Potential vegetation, disturbance, plant succession and other aspects of forest ecology. US Department of Agriculture, Forest Service, Pacific Northwest Region, Umatilla National Forest, Technical Publication F14-SO-TP-09-00, p 88

  • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Régnière J (1996) Generalized approach to landscape-wide seasonal forecasting with temperature-driven simulations models. Environ Entomol 25:869–881

    Google Scholar 

  • Rey P (1960) Essai de phytocinétique biogéographique. Centre national de la recherche scientifique, Paris

    Google Scholar 

  • Robitaille A, Saucier JP (1998) Paysages régionaux du Québec méridional. Les publications du Québec, Québec

    Google Scholar 

  • Rowe JS (1962) Soil, site and land classification. For Chron 38:420–432

    Google Scholar 

  • Rowe JS (1972) Forest regions of Canada. Environment Canada. Canadian Forestry Service Publication No. 1300

  • Rowe JS, Sheard JW (1981) Ecological land classification: a survey approach. Environ Manag 5:451–464

    Article  Google Scholar 

  • Saucier JP, Grondin P, Robitaille A, Gosselin J, Morneau C, Richard PJH, Brisson J, Sirois L, Leduc A, Morin H, Thiffault É, Gauthier S, Lavoie C, Payette S (2009) Écologie forestière, chap 4. In: Manuel de foresterie, 2ème édition, Ouvrage collectif. Éditions MultiMondes et Ordre des ingénieurs forestiers du Québec, Québec, pp 165–315

  • Schulte LA, Mladenoff DJ, Crow TR, Merrick LC, Cleland DT (2007) Homogenization of northern US Great Lakes forests due to land use. Landscape Ecol 22:1089–1103

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K (2006) Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecology 87:2697–2708

    Article  PubMed  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197

    Article  Google Scholar 

  • Turner MG, Romme WH, Gardner RH, O’Neil RV, Kratz TK (1993) A revised concept of landscape equilibrium: disturbance and stability on scaled landscapes. Landscape Ecol 8:213–227

    Article  Google Scholar 

  • Urban DL, O’Neil RV, Shugart HH (1987) Landscape ecology: a hierarchical perspective can help scientists understand spatial patterns. Bioscience 37:119–127

    Article  Google Scholar 

  • Wagner HH, Fortin MJ (2005) Spatial analysis of landscapes: concepts and statistics. Ecology 86:1975–1987

    Article  Google Scholar 

  • White PS (1979) Pattern, process, and natural disturbance in vegetation. Bot Rev 45:229–299

    Article  Google Scholar 

  • White PS (1987) Natural disturbance, patch dynamics, and landscape pattern in natural areas. Nat Area J 7:14–22

    Google Scholar 

  • White PS, Jentsch A (2001) The search for generality in studies of disturbance and ecosystem dynamics. Prog Bot 62:399–450

    Article  Google Scholar 

  • White MA, Mladenoff DJ (1994) Old-growth landscape transitions from pre-European settlement to present. Landscape Ecol 9:191–205

    Article  Google Scholar 

  • White PS, Harrod J, Romme WH, Betancourt J (1999) Disturbance and temporal dynamics. In: Szaro RC, Johnson NC, Sexton WT, Malk AJ (eds) Ecological stewardship: a common reference for ecosystem management, vol 2. Elsevier Science, Oxford, pp 281–312

    Google Scholar 

  • Whittaker RH (1967) Gradient analysis of vegetation. Biol Rev 49:207–264

    Article  Google Scholar 

  • Wu J, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70:439–466

    Article  Google Scholar 

  • Zonneveld IS (1989) The land unit—A fundamental concept in landscape ecology, and its applications. Landscape Ecol 3:67–86

    Article  Google Scholar 

Download references

Acknowledgments

Data (plots, maps, archives) used in this study were collected by the staff of the Ministère des Ressources naturelles du Québec (MRN) between 1970 and 2000. This study could not have been produced without the effort of many individuals. Comments by Yan Boucher, David T. Cleland, Paul Jasinski, Jason Laflamme, Del Meidinger, Germain Mercier, 2 anonymous reviewers, as well as stylistic revisions by Debra Christiansen-Stowe, Karen Grislis, and Denise Tousignant were all greatly appreciated. We would also like to thank Denis Hotte and Véronique Poirier for their assistance in data analysis and geomatics. This study was funded by the MRN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Grondin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7255 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grondin, P., Gauthier, S., Borcard, D. et al. A new approach to ecological land classification for the Canadian boreal forest that integrates disturbances. Landscape Ecol 29, 1–16 (2014). https://doi.org/10.1007/s10980-013-9961-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-013-9961-2

Keywords

Navigation