Skip to main content

Advertisement

Log in

Comparison of the Sensitivity of Landscape-fire-succession Models to Variation in Terrain, Fuel Pattern, Climate and Weather

  • Research article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

The purpose of this study was to compare the sensitivity of modelled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The sensitivity of area burned to variation in four factors, namely terrain (flat, undulating and mountainous), fuel pattern (finely and coarsely clumped), climate (observed, warmer & wetter, and warmer & drier) and weather (year-to-year variability) was determined for four existing landscape-fire-succession models (EMBYR, FIRESCAPE, LANDSUM and SEM-LAND) and a new model implemented in the LAMOS modelling shell (LAMOS(DS)). Sensitivity was measured as the variance in area burned explained by each of the four factors, and all of the interactions amongst them, in a standard generalised linear modelling analysis. Modelled area burned was most sensitive to climate and variation in weather, with four models sensitive to each of these factors and three models sensitive to their interaction. Models generally exhibited a trend of increasing area burned from observed, through warmer and wetter, to warmer and drier climates with a 23-fold increase in area burned, on average, from the observed to the warmer, drier climate. Area burned was sensitive to terrain for FIRESCAPE and fuel pattern for EMBYR. These results demonstrate that the models are generally more sensitive to variation in climate and weather as compared with terrain complexity and fuel pattern, although the sensitivity to these latter factors in a small number of models demonstrates the importance of representing key processes. The models that represented fire ignition and spread in a relatively complex fashion were more sensitive to changes in all four factors because they explicitly simulate the processes that link these factors to area burned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.K. Agee (1993) Fire ecology of Pacific Northwest forests Island Press Washington, DC, USA

    Google Scholar 

  • M.Y. Antonovski M.T. Ter-Mikaelian V.V. Furyaev (1992) A spatial model of long-term forest fire dynamics and its applications to forests in western Siberia H.H. Shugart R. Leemans G.B. Bonan (Eds) A Systems Analysis of the Global Boreal Forest Cambridge University Press Cambridge, UK 373–403

    Google Scholar 

  • D.H. Anderson E.A. Catchpole N.J. Mestre ParticleDe T. Parkes (1982) ArticleTitleModelling the spread of grass fires Journal of the Australian Mathematical Society (Series B) 23 451–466

    Google Scholar 

  • W.L. Baker (1989) ArticleTitleA review of models of landscape change Landscape Ecology 2 111–131 Occurrence Handle10.1007/BF00137155

    Article  Google Scholar 

  • W.L. Baker (1992) ArticleTitleThe landscape ecology of large disturbances in the design and management of nature reserves Landscape Ecology 7 181–194

    Google Scholar 

  • W.L. Baker (1999) Spatial simulation of the effects of human and natural disturbance regimes on landscape structure D.J. Mladenoff W.L. Baker (Eds) Spatial Modelling of Forest Landscapes: Approaches and Applications Cambridge University Press Cambridge, UK 277–308

    Google Scholar 

  • J.S. Barrows D.V. Sandberg J.D. Hart (1977) Lightning fires in Northern Rocky Mountain forests Final Report for Contract Grant 16–440-CA USDA Forest Service Intermountain Fire Sciences Laboratory Missoula, MT, USA

    Google Scholar 

  • W.C. Bessie E.A. Johnson (1995) ArticleTitleThe relative importance of fuels and weather on fire behaviour in subalpine forests Ecology 76 747–762

    Google Scholar 

  • D.B. Botkin (1993) Forest Dynamics: An Ecological Model Oxford University Press Oxford, UK 309

    Google Scholar 

  • K.L. Bristow G.S. Campbell (1984) ArticleTitleOn the relationship between incoming solar radiation and daily maximum and minimum temperature Agricultural and Forest Meteorology 31 159–166 Occurrence Handle10.1016/0168-1923(84)90017-0

    Article  Google Scholar 

  • H.K.M. Bugmann X.D. Yan M.T. Sykes P. Martin M. Lindner P.V. Desanker S.G. Cumming (1996) ArticleTitleA comparison of forest gap models: model structure and behaviour Climatic Change 34 289–313

    Google Scholar 

  • G.M. Byram (1959) Combustion of forest fuels K.P. Davis (Eds) Forest Fire: Control and Use McGraw-Hill New York, USA 61–80

    Google Scholar 

  • G.J. Cary (1998) Predicting Fire Regimes and their Ecological Effects in Spatially Complex Landscapes The Australian National University Canberra, Australia 284

    Google Scholar 

  • G.J. Cary (2002) Importance of a changing climate for fire regimes in Australia R.A. Bradstock A.M. Gill J.E. Williams (Eds) Flammable Australia: The Fire Regimes and Biodiversity of a Continent Cambridge University Press Cambridge, UK 26–46

    Google Scholar 

  • G.J. Cary J.C. Gallant (1997) Application of a stochastic climate generator for fire danger modelling Proceedings of the Biennial Australasian Bushfire Bushfire Conference, July 1997 Darwin, Australia

    Google Scholar 

  • G.J. Cary J.C.G. Banks (1999) Fire regime sensitivity to global climate change: an Australian perspective J.L. Innes M.M. Verstraete M. Beniston (Eds) Advances in Global Change Research Kluwer Academic Publishers Dordrecht and Boston 233–246

    Google Scholar 

  • J.D. Clark (1989) ArticleTitleEcological disturbance as a renewal process: theory and application to fire history Oikos 56 17–30

    Google Scholar 

  • J.D. Clark (1990) ArticleTitleFire and climate change during the last 750 years in northwestern Minnesota Ecological Monographs 60 135–159

    Google Scholar 

  • J.S. Clark (1993) ArticleTitleFireclimate changeand forest processes during the past 2000 years Geological Society of AmericaSpecial Paper 276 295–308

    Google Scholar 

  • W. Cramer D.W. Kicklighter A. Bondeau B. Moore SuffixIII G. Churkina B. Nemry A. Ruimy A.L. Schloss (1999) ArticleTitleThe participants of the Potsdam NPP intermodel comparison 1999. Comparin global models of terrestrial net primary productivity (NPP): overview and key results Global Change Biology 5 IssueIDSuppl.1 1–15

    Google Scholar 

  • P.J. Crutzen J.G. Goldammer (1993) Fire in the Environment: The Ecological, Atmospheric and Climatic Importance of Vegetation Fires John Wiley and Sons New York, New York, USA

    Google Scholar 

  • InstitutionalAuthorNameCSIRO (1996) Climate Change Scenarios for the Australian Region Climate Impact Group, CSIRO Division of Atmospheric Research Melbourne, Australia

    Google Scholar 

  • V.H. Dale T.W. Doyle H.H. Shugart (1985) ArticleTitleA comparison of tree growth models Ecological Modelling 29 145–169 Occurrence Handle10.1016/0304-3800(85)90051-1

    Article  Google Scholar 

  • F.W. Davis D.A. Burrows (1993) Modelling fire regimes in Mediterranean landscapes S.A. Levin T.M. Powell J.H. Steele (Eds) Patch Dynamics Springer-Verlag New York, USA 247–259

    Google Scholar 

  • D.L. DeAngelis L.J. Gross M.A. Huston W.F. Wolff D.M. Fleming E.J. Comiskey S.M. Sylvester (1998) ArticleTitleLandscape modelling for everglades ecosystem restoration Ecosystems 1 64–75 Occurrence Handle10.1007/s100219900006

    Article  Google Scholar 

  • M.D. Flannigan J.B. Harrington (1988) ArticleTitleA study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada 1953–80 Journal of Applied Meteorology 27 441–452 Occurrence Handle10.1175/1520-0450(1988)027<0441:ASOTRO>2.0.CO;2

    Article  Google Scholar 

  • M.D. Flannigan C.E. Wagner ParticleVan (1991) ArticleTitleClimate change and wildfire in Canada Canadian Journal of Forest Research 21 66–72

    Google Scholar 

  • Forestry Canada Fire Danger Group 1992. Development and structure of the Canadian Forest Fire Behaviour Prediction Systems. Report ST-X-3, Forestry Canada, Science and Sustainable Development Directorate, Ottawa, pp. 63.

  • InstitutionalAuthorNameForestry Canada Fire Danger Group (1992) Development and structure of the Canadian Forest Fire Behaviour Prediction Systems Forestry CanadaScience and Sustainable Development Directorate Ottawa 63

    Google Scholar 

  • B.J. Fox M.D. Fox G.M. McKay (1979) ArticleTitleLitter accumulation after fire in a eucalypt forest Australian Journal of Botany 27 157–165 Occurrence Handle10.1071/BT9790157

    Article  Google Scholar 

  • D.M. Fuquay (1980) Lightning that ignites forest fires Proceedings of the 6th Conference on Fire and Forest Meteorology, Society of American Foresters Seattle, WA, USA

    Google Scholar 

  • R.H. Gardner R.V. O’Neill J.B. Mankin D. Kumar (1980) ArticleTitleComparative error analysis of six predator-prey models Ecology 61 323–332

    Google Scholar 

  • R.H. Gardner W.G. Cale R.V. O’Neill (1982) ArticleTitleRobust analysis of aggregation error Ecology 63 1771–1179

    Google Scholar 

  • R.H. Gardner W.W. Hargrove M.G. Turner W.H. Romme (1996) Climate changedisturbances and landscape dynamics B.H. Walker W.L. Steffen (Eds) Global Change and Terrestrial Ecosystems Cambridge University Press Cambridge, UK 149–172

    Google Scholar 

  • A.M. Gill (1975) ArticleTitleFire and the Australian flora: a review Australian Forestry 38 4–25

    Google Scholar 

  • W.W. Hargrove R.H. Gardner M.G. Turner W.H. Romme D.G. Despain (2000) ArticleTitleSimulating fire patterns in heterogeneous landscapes Ecological Modelling 135 243–263 Occurrence Handle10.1016/S0304-3800(00)00368-9

    Article  Google Scholar 

  • C. Hely M. Flannigan Y. Bergeron D. McRae (2001) ArticleTitleRole of vegetation and weather on fire behaviour in the Canadian mixedwood boreal forest using two fire behaviour prediction systems Canadian Journal of Forest Research 31 430–441

    Google Scholar 

  • K.G. Hirsch (1996) Canadian Forest Fire Behavior Prediction (FBP) System: User's Guide Northern Forestry CentreCanadian Forest Service Edmonton, Alberta

    Google Scholar 

  • IPCC 2001. Climate Change 2001: The Scientific Basis. IPCC Third Assessment Report: Summaries for Policymakers Working Group I Climate Change 2001.

  • W.D. Jackson (1968) ArticleTitleFireairwater and earth – an elemental ecology of Tasmania Proceedings of the Ecological Society of Australia 3 9–16

    Google Scholar 

  • R.E. Keane P. Morgan S.W. Running (1996) FIRE-BGC – a mechanistic ecological process model for simulating fire succession on coniferous forest landscapes of the northern Rocky Mountains USDA Forest Service Intermountain Research Station Missoula, MT, USA

    Google Scholar 

  • R.E. Keane R. Parsons P. Hessburg (2002) ArticleTitleEstimating historical range and variation of landscape patch dynamics: limitations of the simulation approach Ecological Modelling 151 29–49 Occurrence Handle10.1016/S0304-3800(01)00470-7

    Article  Google Scholar 

  • R.E. Keane M.A. Finney (2003) The simulation of landscape fireclimateand ecosystem dynamics T.T. Veblen W.L. Baker G. Montenegro T.W. Swetnam (Eds) Fire and Global Change in Temperate Ecosystems of the Western Americas Springer-Verlag New York, USA 32–66

    Google Scholar 

  • R.E. Keane G.J. Cary R. Parsons (2003) ArticleTitleUsing simulation to map fire regimes: an evaluation of approaches, strategies, and limitations International Journal of Wildland Fire 12 309–322 Occurrence Handle10.1071/WF03017

    Article  Google Scholar 

  • R.E. Keane G.J. Cary I.D. Davies M.D. Flannigan R.H. Gardner S. Lavorel J.M. Lenihan C. Li S.T. Rupp (2004) ArticleTitleA classification of landscape fire succession models: spatial simulations of fire and vegetation dynamics Ecological Modelling 179 3–27 Occurrence Handle10.1016/j.ecolmodel.2004.03.015

    Article  Google Scholar 

  • D.H. Knight (1987) Parasites, lightning, and the vegetation mosaic in wilderness landscapes M.G. Turner (Eds) Landscape Heterogeneity and Disturbance Springer-Verlag New York 59–83

    Google Scholar 

  • S. Lavorel I.D. Davies I.R. Noble (2000) LAMOS: A LAndscape MOdelling Shell B.C. Hawkes M.D. Flannigan (Eds) Landscape Fire Modelling-Challenges and Opportunities. Northern Forestry Centre Information Report NOR-X-371 Natural Resources CanadaCanadian Forest Service Edmonton Alberta, Canada 25–28

    Google Scholar 

  • K. Lertzman J. Fall D. Brigitte (1998) ArticleTitleThree kinds of heterogeneity in fire regimes: at the crossroads of fire history and landscape ecology Northwest Science 72 4–23

    Google Scholar 

  • C. Li (2000) ArticleTitleReconstruction of natural fire regimes through ecological modelling Ecological Modelling 134 129–144 Occurrence Handle10.1016/S0304-3800(00)00290-8

    Article  Google Scholar 

  • C. Li (2002) ArticleTitleEstimation of fire frequency and fire cycle: a computational perspective Ecological Modelling 154 103–120 Occurrence Handle10.1016/S0304-3800(02)00069-8

    Article  Google Scholar 

  • Li C. 2003. Modelling the influence of fire ignition source patterns on fire regimes of west-central Alberta. Proceedings of the 4th International Conference on Integrating GIS and Environmental Modelling: Problems, Prospects and Research Needs. Banff, Alberta, Canada, September 2–8, 2000. (CDROM).

  • C. Li (2004) Simulating Forest Fire Regimes in the Foothills of the Canadian Rocky Mountains A.H. Perera L.J. Buse M.G. Weber (Eds) Emulating Natural Forest Landscape Disturbances: Concepts and Applications Columbia University Press New York, NY, USA

    Google Scholar 

  • C. Li M.D. Flannigan I.G.W. Corns (2000) ArticleTitleInfluence of potential climate change on forest landscape dynamics of west-central Alberta Canadian Journal of Forest Research 30 1905–1912 Occurrence Handle10.1139/cjfr-30-12-1905

    Article  Google Scholar 

  • C. Li H.J. Barclay (2001) ArticleTitleFire disturbance patterns and forest age structure Natural Resource Modelling 14 495–521

    Google Scholar 

  • C. Li M.J. Apps (2002) Fire regimes and the carbon dynamics of boreal forest ecosystems C.H. Shaw M.J. Apps (Eds) The Role of Boreal Forests and Forestry in the Global Carbon Cycle Northern Forestry CentreCanadian Forest Service Edmonton, Alberta, Canada 107–118

    Google Scholar 

  • N.C. Matalas (1967) ArticleTitleMathematical assessment of synthetic hydrology Water Resources Research 3 937–945

    Google Scholar 

  • A.G. McArthur (1967) Fire behaviour in eucalypt forests Commonwealth of Australia Forest and Timber Bureau Leaflet107 Canberra Australia

    Google Scholar 

  • M.A. McCarthy G.J. Cary (2002) Fire regimes of landscapes: models and realities R.A. Bradstock A.M. Gill J.E. Williams (Eds) Flammable Australia: The Fire Regimes and Biodiversity of a Continent Cambridge University Press Cambridge, UK 76–93

    Google Scholar 

  • J.M. Moreno W.C. Oechel (1994) The Role of Fire in Mediterranean Ecosystems Springer Berlin

    Google Scholar 

  • I.R. Noble G.A.V. Bary A.M. Gill (1980) ArticleTitleMcArthur’s fire-danger meters expressed as equations Australian Journal of Ecology 5 201–203

    Google Scholar 

  • J.S. Olson (1963) ArticleTitleEnergy storage and the balance of producers and decomposers in ecological systems Ecology 44 322–332

    Google Scholar 

  • Y.D. Pan J.M. Melillo A.D. McGuire D.W. Kicklighter L.F. Pitelka K. Hibbard L.L. Pierce S.W. Running D.S. Ojima W.J. Parton D.S. Schimel (1998) ArticleTitleModeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modelling and Analysis Project (VEMAP) Oecologia 114 389–404 Occurrence Handle10.1007/s004420050462

    Article  Google Scholar 

  • R.J. Raison P.V. Woods P.K. Khanna (1983) ArticleTitleDynamics of fine fuels in recurrently burnt eucalypt forests Australian Forestry 46 294–302

    Google Scholar 

  • C.W. Richardson (1981) ArticleTitleStochastic simulation of daily precipitation, temperatureand solar radiation Water Resources Research 17 182–190

    Google Scholar 

  • M.L. Roderick (1999) ArticleTitleEstimating the diffuse component from daily and monthly measurements of global radiation Agricultural and Forest Meteorology 95 169–185 Occurrence Handle10.1016/S0168-1923(99)00028-3

    Article  Google Scholar 

  • M.L. Roderick G.D. Farquhar (2002) ArticleTitleThe cause of decreased pan evaporation over the last 50 years Science 298 1410–1411 Occurrence Handle1:CAS:528:DC%2BD38Xos1Wnsbk%3D Occurrence Handle12434057

    CAS  PubMed  Google Scholar 

  • W.H. Romme (1982) ArticleTitleFire and landscape diversity in subalpine forests of Yellowstone National Park Ecological Monographs 52 199–221

    Google Scholar 

  • W.H. Romme M.G. Turner (1991) ArticleTitleImplications of global climate change for biogeographic patterns in the greater Yellowstone ecosystem Conservation Biology 5 373–386 Occurrence Handle10.1111/j.1523-1739.1991.tb00151.x

    Article  Google Scholar 

  • K.A. Rose A.L. Brenkert R.B. Cook R.H. Gardner J.P. Hettelingh (1991) ArticleTitleSystematic comparison of ILWAS, MAGIC, and ETD watershed acidification models: 1 Mapping among model inputs and deterministic results. Water Resources Research 27 2577–2598 Occurrence Handle1:CAS:528:DyaK38XislGntg%3D%3D

    CAS  Google Scholar 

  • R.C. Rothermel (1972) A mathematical model for predicting fire spread in wildland fuels US Department of AgricultureForest ServiceIntermountain Forest and Range Experiment Station Ogden, UT, USA

    Google Scholar 

  • T.S. Rupp A.M. Starfield F.S. Chapin (2000) ArticleTitleA frame-based spatially explicit model of subartic vegetation response to climate change: comparison with a point model Landscape Ecology 15 383–400 Occurrence Handle10.1023/A:1008168418778

    Article  Google Scholar 

  • SAS 2000. OnlineDoc, Version 8. SAS Institute Inc. SAS Institute Inc., Cary, NC.

  • K.M. Schmidt J.P. Menakis C.C. Hardy D.L. Bunnell N. Sampson (2002) Development of coarse-scale spatial data for wildland fire and fuel management US Department of AgricultureForest ServiceRocky Mountains Research station Ogden, UT, USA

    Google Scholar 

  • H.H. Shugart (2001) Forest gap models R.M. May (Eds) Encyclopedia of Global Environmental Change Volume 2: The Earth System: Biological and Ecological Dimensions of Global Environmental Change Wiley Books London, UK

    Google Scholar 

  • A.M. Starfield F.S. Chapin (1996) ArticleTitleModel of transient changes in arctic and boreal vegetation in response to climate and land use change Ecological Applications 6 842–864

    Google Scholar 

  • B.J. Stocks M.A. Fosberg T.J. Lynaham L. Mearns B.M. Wotton Q. Yang J.Z. Lin K. Lawrence G.R. Hartley J.A. Mason D.W. McKenney (1998) ArticleTitleClimate change and forest fire potential in Russian and Canadian boreal forests Climatic Change 38 1–13 Occurrence Handle10.1023/A:1005306001055

    Article  Google Scholar 

  • R. Suffling C. Lihou Y. Morand (1988) ArticleTitleControl of landscape diversity by catastrophic disturbance: a theory and a case study of fire in Canadian boreal forest Environmental Management 12 73–78 Occurrence Handle10.1007/BF01867378

    Article  Google Scholar 

  • F.J. Swanson J.F. Franklin J.R. Sedell (1997) Landscape patterns, disturbanceand management in the Pacific NorthwestUSA I.S. Zonnneveld R.T.T. Forman (Eds) Changing Landscapes: An Ecological Perspective Springer-Verlag New York, NY, USA 191–213

    Google Scholar 

  • T.W. Swetnam (1993) ArticleTitleFire history and climate change in giant sequoia groves Science 262 885–889

    Google Scholar 

  • M.G. Turner R.H. Gardner V.H. Dale R.V. O’Neill (1989a) ArticleTitlePredicting the spread of disturbance across heterogeneous landscapes Oikos 55 121–129

    Google Scholar 

  • M.G. Turner R. Costanza F.H. Sklar (1989b) ArticleTitleMethods to evaluate the performance of spatial simulation models Ecological Modelling 47 1–18

    Google Scholar 

  • M.G. Turner W.H. Romme R.H. Gardner W.W. Hargrove (1997) ArticleTitleEffects of fire size and pattern on early succession in Yellowstone National Park Ecological Monographs 67 411–433

    Google Scholar 

  • C.E. Wagner ParticleVan (1969) ArticleTitleA simple fire-growth model Forestry Chronicle 45 3–4

    Google Scholar 

  • C.E. Wagner ParticleVan (1987) Development and structure of the Canadian Forest Fire Weather Index System Canadian Forest Service OttawaCanada 36

    Google Scholar 

  • VEMAP 1996. The vegetation/ecosystem modelling and analysis project (VEMAP): assessing the potential responses of natural ecosystems to climate change. EPRI.

  • J. Walker (1981) Fuel dynamics in Australian vegetation A.M. Gill R.H. Groves I.R. Noble (Eds) Fire and The Australian Biota Australian Academy of Science Canberra, Australia 101–127

    Google Scholar 

  • B.M. Wotton M.D. Flannigan (1993) ArticleTitleLength of fire season in a changing climate Forestry Chronicle 69 187–192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey J. Cary.

Additional information

The US Government's and the Canadian Government's right to retain a non-exclusive, royalty-free license is acknowledged

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cary, G.J., Keane, R.E., Gardner, R.H. et al. Comparison of the Sensitivity of Landscape-fire-succession Models to Variation in Terrain, Fuel Pattern, Climate and Weather. Landscape Ecol 21, 121–137 (2006). https://doi.org/10.1007/s10980-005-7302-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-005-7302-9

Keywords

Navigation