Skip to main content

Advertisement

Log in

Current and Future Fire Regimes and Their Influence on Natural Vegetation in Ethiopia

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Fire is a major factor shaping the distribution of vegetation types. In this study, we used a recent high resolution map of potential natural vegetation (PNV) types and MODIS fire products to model and investigate the importance of fire as driver of vegetation distribution patterns in Ethiopia. We employed statistical modeling techniques to estimate the distribution of fire and the PNVs under current climatic conditions, and used the calibrated models to project distributions for different climate change scenarios. Results show a clear congruence between distribution patterns of fire and major vegetation types. The effect of climate change varies considerably between climate change models and scenarios, but as general trend expansions of moist Afromontane forest and CombretumTerminalia woodlands were predicted. Fire-prone areas were also predicted to increase, and including this factor in vegetation distribution models resulted in stronger expansion of CombretumTerminalia woodlands and a more limited increase of moist Afromontane forests. These results underline the importance of fire as a regulating factor of vegetation distribution patterns, and how fire needs to be factored into predict the possible effects of climate change. For conservation strategies to effectively address conservation challenges caused by rapid climate shifts, it is imperative that they not only consider the direct influence of climate changes on the vegetation, species species, or biodiversity patterns, but also the influence of future fire regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Accatino F, De Michele C, Vezzoli R, Donzelli D, Scholes RJ. 2010. Tree-grass co-existence in savanna: interactions of rain and fire. J Theor Biol 267:235–42.

    Article  PubMed  Google Scholar 

  • Angassa A, Oba G. 2008. Herder Perceptions on impacts of range enclosures, crop farming, fire ban and bush encroachment on the rangelands of Borana, Southern Ethiopia. Hum Ecol 36:201–15.

    Article  Google Scholar 

  • Araújo MB, New M. 2007. Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–7.

    Article  PubMed  Google Scholar 

  • Araújo MB, Whittaker RJ, Ladle RJ, Erhard M. 2005. Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14:529–38.

    Article  Google Scholar 

  • Archibald S. 2008. African grazing lawns—how fire, rainfall, and grazer numbers interact to affect grass community states. J Wildl Manag 72:492–501.

    Article  Google Scholar 

  • Archibald S, Bond WJ, Stock WD, Fairbanks DHK. 2005. Shaping the landscape: fire-grazer interactions in an African Savanna. Ecol Appl 15:96–109.

    Article  Google Scholar 

  • Arndt C, Robinson S, Willenbockel D. 2011. Ethiopia’s growth prospects in a changing climate: a stochastic general equilibrium approach. Glob Environ Change 21:701–10.

    Article  Google Scholar 

  • Barbosa PM, Stroppiana D, Grégoire J-M, Cardoso Pereira JM. 1999. An assessment of vegetation fire in Africa (1981–1991): burned areas, burned biomass, and atmospheric emissions. Glob Biogeochem Cycles 13:933–50.

    Article  CAS  Google Scholar 

  • Beerling DJ, Osborne CP. 2006. The origin of the savanna biome. Glob Change Biol 12:2023–31.

    Article  Google Scholar 

  • Boakes EH, McGowan PJK, Fuller RA, Chang-qing D, Clark NE, O’Connor K, Mace GM. 2010. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol 8:e1000385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bond WJ, Keeley JE. 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–94.

    Article  PubMed  Google Scholar 

  • Bond WJ, Midgley GF. 2000. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob Change Biol 6:865–9.

    Article  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF. 2004. The global distribution of ecosystems in a world without fire. New Phytol 165:525–38.

    Article  Google Scholar 

  • Bongaarts J. 2009. Human population growth and the demographic transition. Philos Trans R Soc B 364:2985–90.

    Article  Google Scholar 

  • Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D’Antonio CM, DeFries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Mack M, Moritz MA, Pyne S, Roos CI, Scott AC, Sodhi NS, Swetnam TW. 2011. The human dimension of fire regimes on Earth: the human dimension of fire regimes on Earth. J Biogeogr 38:2223–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Breiman L. 2001. Random forests. Mach Learn 45:5–32.

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ. 1984. Classification and regression trees. Belmont: Wadsworth and Brooks/Cole.

    Google Scholar 

  • Buitenwerf R, Bond WJ, Stevens N, Trollope WSW. 2012. Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Glob Change Biol 18:675–84.

    Article  Google Scholar 

  • Bunce RGH, Bogers MMB, Evans D, Halada L, Jongman RHG, Mucher CA, Bauch B, de Blust G, Parr TW, Olsvig-Whittaker L. 2013. The significance of habitats as indicators of biodiversity and their links to species. Ecol Ind 33:19–25.

    Article  Google Scholar 

  • Cole LES, Bhagwat SA, Willis KJ. 2014. Recovery and resilience of tropical forests after disturbance. Nat Commun 5:3906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombaroli D, Verschuren D. 2010. Tropical fire ecology across the African continent: a paleoecological perspective. PAGES News 18:65–7.

    Google Scholar 

  • D’Odorico P, Laio F, Ridolfi L. 2006. A probabilistic analysis of fire-induced tree-grass coexistence in Savannas. Am Nat 167:E79–87.

    Article  PubMed  Google Scholar 

  • D’Odorico P, Laio F, Porporato A, Ridolfi L, Barbier N. 2007. Noise-induced vegetation patterns in fire-prone savannas. J Geophys Res 112:G2.

    Google Scholar 

  • Dechassa Lemessa D, Perault M. 2001. Forest fires in Ethiopia: reflections on socio-economic and environmental effects of the fires in 2000. Addis Ababa and Providence, RI, USA: UNDP Emergencies Unit for Ethiopia and Brown University.

    Google Scholar 

  • Devineau J-L, Fournier A, Nignan S. 2010. Savanna fire regimes assessment with MODIS fire data: their relationship to land cover and plant species distribution in western Burkina Faso (West Africa). J Arid Environ 74:1092–101.

    Article  Google Scholar 

  • Doherty RM, Sitch S, Smith B, Lewis SL, Thornton PK. 2010. Implications of future climate and atmospheric CO2 content for regional biogeochemistry, biogeography and ecosystem services across East Africa. Glob Change Biol 16:617–40.

    Article  Google Scholar 

  • Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel J-P, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix J-Y, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre M-P, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N. 2013. Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40:2123–65.

    Article  Google Scholar 

  • Duputié A, Zimmermann NE, Chuine I. 2014. Where are the wild things? Why we need better data on species distribution. Glob Ecol Biogeogr 23:457–67.

    Article  Google Scholar 

  • Enright NJ, Fontaine JB, Lamont BB, Miller BP, Westcott VC. 2014. Resistance and resilience to changing climate and fire regime depend on plant functional traits. J Ecol 102:1572–81.

    Article  Google Scholar 

  • Eriksson I, Teketay D, Granstrom A. 2003. Response of plant communities to fire in an Acacia woodland and a dry Afromontane forest, southern Ethiopia. For Ecol Manag 177:39–50.

    Article  Google Scholar 

  • Falk DA, Miller C, McKenzie D, Black AE. 2007. Cross-scale analysis of fire regimes. Ecosystems 10:809–23.

    Article  Google Scholar 

  • Farris E, Filibeck G, Marignani M, Rosati L. 2010. The power of potential natural vegetation (and of spatial-temporal scale): a response to Carrión & Fernández (2009). J Biogeogr 37:2211–13.

    Article  Google Scholar 

  • Fielding AH, Bell JF. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49.

    Article  Google Scholar 

  • Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–232.

    Article  Google Scholar 

  • Friedman JH, Roosen CB. 1995. An introduction to multivariate adaptive regression splines. Stat Methods Med Res 4:197.

    Article  CAS  PubMed  Google Scholar 

  • Friis I, Demissew S, Van Breugel P. 2010. Atlas of the potential vegetation of Ethiopia. Biologiske Skrifter (BiolSkrDanVidSelsk) 58:307.

    Google Scholar 

  • Geiger EL, Gotsch SG, Damasco G, Haridasan M, Franco AC, Hoffmann WA. 2011. Distinct roles of savanna and forest tree species in regeneration under fire suppression in a Brazilian savanna. J Veg Sci 22:312–21.

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang Z-L, Zhang M. 2011. The community climate system model version 4. J Clim 24:4973–91.

    Article  Google Scholar 

  • Giglio L, Descloitres J, Justice CO, Kaufman YJ. 2003. An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–82.

    Article  Google Scholar 

  • Gillson L, Ekblom A. 2009. Resilience and thresholds in savannas: nitrogen and fire as drivers and responders of vegetation transition. Ecosystems 12:1189–203.

    Article  CAS  Google Scholar 

  • Gillson L, Marchant R. 2014. From myopia to clarity: sharpening the focus of ecosystem management through the lens of palaeoecology. Trends Ecol Evol 29:317–25.

    Article  PubMed  Google Scholar 

  • Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ. 2010. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr 19:755–68.

    Article  Google Scholar 

  • Graham MH. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–15.

    Article  Google Scholar 

  • GRASS Development Team. 2014. Geographic Resources Analysis Support System (GRASS GIS) Software, version 7.0. Beaverton: Open Source Geospatial Foundation. http://grass.osgeo.org.

  • Guyette RP, Muzika RM, Dey DC. 2002. Dynamics of an Anthropogenic fire regime. Ecosystems 5:472–86.

    Google Scholar 

  • Hannah L, Midgley GF, Lovejoy T, Bond WJ, Bush M, Lovett JC, Scott D, Woodward FI. 2002. Conservation of biodiversity in a changing climate. Conserv Biol 16:264–8.

    Article  Google Scholar 

  • Hessl AE. 2011. Pathways for climate change effects on fire: models, data, and uncertainties. Prog Phys Geogr 35:393–407.

    Article  Google Scholar 

  • Higgins SI, Scheiter S. 2012. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488:209–12.

    Article  CAS  PubMed  Google Scholar 

  • Higgins SI, Bond WJ, February EC, Bronn A, Euston-Brown DI, Enslin B, Govender N, Rademan L, O’Regan S, Potgieter AL. 2007. Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88:1119–25.

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–78.

    Article  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J. 2013. dismo: species distribution modeling. http://CRAN.R-project.org/package=dismo.

  • Hoffmann WA, Orthen B, do Nascimento PKV. 2003. Comparative fire ecology of tropical savanna and forest trees. Funct Ecol 17:720–6.

    Article  Google Scholar 

  • ISRIC. 2013. SoilGrids: an automated system for global soil mapping. http://soilgrids1km.isric.org.

  • Jacobs MJ, Schloeder CA. 2002. Fire frequency and species associations in perennial grasslands of south-west Ethiopia. Afr J Ecol 40:1–9.

    Article  Google Scholar 

  • Jensen M, Friis I. 2001. Biomass in wooded grassland, woodland and dry forest at Gambella, western Ethiopia. Biologiske skrifter 54:349–87.

    Google Scholar 

  • Johansson M, Rooke T, Fetene M, Granström A. 2009. Browser selectivity alters post-fire competition between Erica arborea and E. trimera in the sub-alpine heathlands of Ethiopia. Plant Ecol 207:149–60.

    Article  Google Scholar 

  • Johansson MU, Fetene M, Malmer A, Granström A. 2012. Tending for cattle: traditional fire management in ethiopian montane heathlands. Ecol Soc 17:3.

    Google Scholar 

  • JRC. 2003. Global Land Cover 2000 database version 3. http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php.

  • Justice C, Giglio L, Korontzi S, Owens J, Morisette J, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y. 2002. The MODIS fire products. Remote Sens Environ 83:244–62.

    Article  Google Scholar 

  • Karatzoglou A, Smola A, Hornik K, Zeileis A. 2004. kernlab—an S4 package for kernel methods in R. J Stat Softw 11:1–20.

    Article  Google Scholar 

  • Keith DA, Holman L, Rodoreda S, Lemmon J, Bedward M. 2007. Plant functional types can predict decade-scale changes in fire-prone vegetation. J Ecol 95:1324–37.

    Article  Google Scholar 

  • Kidanu A, Rovin K, Hardee-Cleaveland K. 2009. Linking population, fertility and family planning with adaptation to climate change: views from Ethiopia. DC: Population Action International Washington.

    Google Scholar 

  • Kindt R, Coe R. 2005. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. Nairobi: World Agroforestry Centre (ICRAF).

    Google Scholar 

  • Kitzberger T, Aráoz E, Gowda JH, Mermoz M, Morales JM. 2012. Decreases in fire spread probability with forest age promotes alternative community states, reduced resilience to climate variability and large fire regime shifts. Ecosystems 15:97–112.

    Article  Google Scholar 

  • Krawchuk MA, Moritz MA. 2011. Constraints on global fire activity vary across a resource gradient. Ecology 92:121–32.

    Article  PubMed  Google Scholar 

  • Krawchuk MA, Moritz MA, Parisien M-A, Van Dorn J, Hayhoe K. 2009. Global pyrogeography: the current and future distribution of wildfire. PLoS One 4:e5102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ladle RJ, Whittaker RJ. 2011. Conservation biogeography. 1st edn. Oxford: Wiley-Blackwell.

    Book  Google Scholar 

  • Lavorel S, Flannigan MD, Lambin EF, Scholes MC. 2006. Vulnerability of land systems to fire: interactions among humans, climate, the atmosphere, and ecosystems. Mitig Adapt Strat Glob Change 12:33–53.

    Article  Google Scholar 

  • Le Page Y, Oom D, Silva JM, Jönsson P, Pereira JM. 2010. Seasonality of vegetation fires as modified by human action: observing the deviation from eco-climatic fire regimes. Glob Ecol Biogeogr 19:575–88.

    Google Scholar 

  • Lehmann CER, Anderson TM, Sankaran M, Higgins SI, Archibald S, Hoffmann WA, Hanan NP, Williams RJ, Fensham RJ, Felfili J, Hutley LB, Ratnam J, Jose JS, Montes R, Franklin D, Russell-Smith J, Ryan CM, Durigan G, Hiernaux P, Haidar R, Bowman DMJS, Bond WJ. 2014. Savanna vegetation-fire-climate relationships differ among continents. Science 343:548–52.

    Article  CAS  PubMed  Google Scholar 

  • Linard C, Gilbert M, Snow RW, Noor AM, Tatem AJ. 2012. Population distribution, settlement patterns and accessibility across Africa in 2010. PLoS One 7:e31743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Stanturf J, Goodrick S. 2010. Trends in global wildfire potential in a changing climate. For Ecol Manag 259:685–97.

    Article  Google Scholar 

  • LP DAAC. 2009. MODIS land cover type yearly L3 global 500 m SIN grid (MCD12Q1). https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/land_cover/yearly_l3_global_500_m/mcd12q1.

  • Luedeling E, Kindt R, Huth NI, Koenig K. 2014. Agroforestry systems in a changing climate—challenges in projecting future performance. Curr Opin Environ Sustain 6:1–7.

    Article  Google Scholar 

  • Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice IC. 2008. Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 1:697–702.

    Article  CAS  Google Scholar 

  • Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W. 2009. Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69.

    Article  Google Scholar 

  • Meyn A, White PS, Buhk C, Jentsch A. 2007. Environmental drivers of large, infrequent wildfires: the emerging conceptual model. Prog Phys Geogr 31:287–312.

    Article  Google Scholar 

  • Midgley JJ, Lawes MJ, Chamaillé-Jammes S. 2010. Savanna woody plant dynamics: the role of fire and herbivory, separately and synergistically. Aust J Bot 58:1–11.

    Article  Google Scholar 

  • Milborrow S. 2013. Earth: multivariate adaptive regression spline models. http://CRAN.R-project.org/package=earth.

  • Morgan P, Hardy CC, Swetnam TW, Rollins MG, Long DG. 2001. Mapping fire regimes across time and space: understanding coarse and fine-scale fire patterns. Int J Wildl Fire 10:329–42.

    Article  Google Scholar 

  • Nelson DM, Verschuren D, Urban MA, Hu FS. 2012. Long-term variability and rainfall control of savanna fire regimes in equatorial East Africa. Glob Change Biol 18:3160–70.

    Article  Google Scholar 

  • Olson DM, Dinerstein E. 2002. The Global 200: priority ecoregions for global conservation. Ann Mo Bot Gard 89:199–224.

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake D, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR. 2001. Terrestrial ecoregions of the World: a new map of life on Earth. Bioscience 51:933–8.

    Article  Google Scholar 

  • Parisien M-A, Moritz MA. 2009. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecol Monogr 79:127–54.

    Article  Google Scholar 

  • Paritsis J, Holz A, Veblen TT, Kitzberger T. 2013. Habitat distribution modeling reveals vegetation flammability and land use as drivers of wildfire in SW Patagonia. Ecosphere 4:53.

    Article  Google Scholar 

  • Pechony O, Shindell DT. 2010. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci 107:19167–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips S, Dudik M, Schapire R. 2010. Maxent software for species habitat modeling. AT&T Labs-Research, Princeton University, and the Center for Biodiversity and Conservation, American Museum of Natural History http://www.cs.princeton.edu/~schapire/maxent/.

  • Potapov P, Laestadius L, Minnemeyer S. 2011. Global map of forest landscape restoration opportunities. www.wri.org/forest-restoration-atlas.

  • Ramirez-Villegas J, Challinor A. 2012. Assessing relevant climate data for agricultural applications. Agric For Meteorol 161:26–45.

    Article  Google Scholar 

  • Ratnam J, Bond WJ, Fensham RJ, Hoffmann WA, Archibald S, Lehmann CER, Anderson MT, Higgins SI, Sankaran M. 2011. When is a ‘forest’ a savanna, and why does it matter? When is a ‘forest’ a savanna. Glob Ecol Biogeogr 20:653–60.

    Article  Google Scholar 

  • R Core Team. 2014. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/.

  • Ricotta C, Carranza ML, Avena G, Blasi C. 2002. Are potential natural vegetation maps a meaningful alternative to neutral landscape models? Appl Veg Sci 5:271–5.

    Article  Google Scholar 

  • Sá ACL, Pereira JMC, Charlton ME, Mota B, Barbosa PM, Fotheringham AS. 2011. The pyrogeography of sub-Saharan Africa: a study of the spatial non-stationarity of fire–environment relationships using GWR. J Geogr Syst 13:227–48.

    Article  Google Scholar 

  • Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, Gignoux J, Higgins SI, Le Roux X, Ludwig F, Ardo J, Banyikwa F, Bronn A, Bucini G, Caylor KK, Coughenour MB, Diouf A, Ekaya W, Feral CJ, February EC, Frost PGH, Hiernaux P, Hrabar H, Metzger KL, Prins HHT, Ringrose S, Sea W, Tews J, Worden J, Zambatis N. 2005. Determinants of woody cover in African savannas. Nature 438:846–9.

    Article  CAS  PubMed  Google Scholar 

  • Sankaran M, Ratnam J, Hanan N. 2008. Woody cover in African savannas: the role of resources, fire and herbivory. Glob Ecol Biogeogr 17:236–45.

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413:591–6.

    Article  CAS  PubMed  Google Scholar 

  • Scholze M, Knorr W, Arnell NW, Prentice IC. 2006. A climate-change risk analysis for world ecosystems. Proc Natl Acad Sci 103:13116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva I, Batalha M. 2010. Phylogenetic structure of Brazilian savannas under different fire regimes. J Veg Sci 21:1003–13.

    Article  Google Scholar 

  • Skarpe C. 1992. Dynamics of savanna ecosystems. J Veg Sci 3:293–300.

    Article  Google Scholar 

  • Smit IP, Asner GP, Govender N, Kennedy-Bowdoin T, Knapp DE, Jacobson J. 2010. Effects of fire on woody vegetation structure in African savanna. Ecol Appl 20:1865–75.

    Article  PubMed  Google Scholar 

  • Somodi I, Molnár Z, Ewald J et al. 2012. Towards a more transparent use of the potential natural vegetation concept—an answer to Chiarucci. J Veg Sci 23:590–5.

    Article  Google Scholar 

  • Staver AC, Archibald S, Levin SA. 2011. The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–2.

    Article  CAS  PubMed  Google Scholar 

  • Therneau T, Atkinson B, Ripley B. 2013. rpart: Recursive Partitioning. R package version 4.1-3. http://CRAN.R-project.org/package=rpart.

  • Travis JMJ, Delgado M, Bocedi G, Baguette M, Bartoń K, Bonte D, Boulangeat I, Hodgson JA, Kubisch A, Penteriani V, Saastamoinen M, Stevens VM, Bullock JM. 2013. Dispersal and species’ responses to climate change. Oikos 122:1532–40.

    Article  Google Scholar 

  • Trollope WSW, Trollope LA, Hartnett DC. 2002. Fire behaviour a key factor in the fire ecology of African grasslands and savannas. In: Viegas DX, Ed. Forest fire research & wildland fire safety. Rotterdam: Mill Press.

    Google Scholar 

  • Van Breugel P, Herrero M, van de Steeg J, Peden D. 2010. Livestock water use and productivity in the Nile Basin. Ecosystems 13:205–21.

    Article  Google Scholar 

  • Van der Maarel E. 2005. Vegetation ecology—an overview. In: van der Maarel E, Ed. Vegetation ecology. Oxford: Blackwell Publishing. p 1–51.

    Google Scholar 

  • Veldman JW, Buisson E, Durigan G, Fernandes GW, Le Stradic S, Mahy G, Negreiros D, Overbeck GE, Veldman RG, Zaloumis NP, Putz FE, Bond WJ. 2015. Toward an old-growth concept for grasslands, savannas, and woodlands. Front Ecol Environ 13:154–62.

    Article  Google Scholar 

  • Venables WN, Ripley BD. 2002. Modern applied statistics with S. 4th edn. Berlin: Springer.

    Book  Google Scholar 

  • VITO. 2012. Dry matter productivity. Mol: VITO.

    Google Scholar 

  • Wakeling JL, Staver AC, Bond WJ. 2011. Simply the best: the transition of savanna saplings to trees. Oikos 120:1448–51.

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–83.

    Article  PubMed  Google Scholar 

  • Wesche K, Miehe G, Kaeppeli M. 2000. The significance of fire for afroalpine ericaceous vegetation. Mt Res Dev 20:340–7.

    Article  Google Scholar 

  • Wigley BJ, Bond WJ, Hoffman MT. 2010. Thicket expansion in a South African savanna under divergent land use: local vs. global drivers? Glob Change Biol 16:964–76.

    Article  Google Scholar 

  • Williams JW, Jackson ST. 2007. Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–82.

    Article  Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE. 2007. Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci 104:5738–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wint GRW, Robinson TP. 2007. Gridded livestock of the world 2007. Rome: Food and Agricultural Organization of the United Nations http://www.fao.org/ag/AGAinfo/resources/en/glw/default.html.

  • Wood SN. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc B (Stat Methodol) 73:3–36.

    Article  Google Scholar 

  • Woodward FI, Lomas MR, Kelly CK. 2004. Global climate and the distribution of plant biomes. Philos Trans R Soc Lond B Biol Sci 359:1465–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woube M. 1998. Effect of fire on plant communities and soils in the humid tropical savannah of Gambela, Ethiopia. Land Degrad Dev 9:275–92.

    Article  Google Scholar 

  • Zumbrunnen T, Bugmann H, Conedera M, Bürgi M. 2009. Linking forest fire regimes and climate—a historical analysis in a dry inner alpine valley. Ecosystems 12:73–86.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank DANIDA for providing the funding of the work of Paulo van Breugel and the Carlsberg Foundation for supporting Ib Friis and Sebsebe Demissew’s field work in many parts of Ethiopia and Mikkel Lydholm Rasmussen for help in an initial phase of the acquisition of fire data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. van Breugel.

Additional information

Author contributions

PvB: Conceived and designed study, performed research, analyzed data, contributed new methods, wrote paper. IF: Conceived study, performed research, wrote paper. SD: Performed research, wrote paper. J-PL: Wrote paper. RK: Wrote paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6765 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Breugel, P., Friis, I., Demissew, S. et al. Current and Future Fire Regimes and Their Influence on Natural Vegetation in Ethiopia. Ecosystems 19, 369–386 (2016). https://doi.org/10.1007/s10021-015-9938-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-015-9938-x

Keywords

Navigation